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Figure S1. Calculated energy distributions for three phase profiles with unitary transmission 

in each unit cell. a) The three phase profiles are set as: 1 = 0, 2 = kxx with kx = k0sin(45°), 3 

= 0 or  for every other unit cell, respectively. b) The calculated intensity distribution
[1]

 in 

angular space, where  is calculated with arcsin(kx/k0) and T
MS

 is set as 460 nm. c) Calculated 

total energy for the three phase profiles. 
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Figure S2. Simulated transmitted polarization states. a,b) The nanopillar with a = 270 nm 

serving as a half-wave plate can convert the incident polarization to its orthogonal state with 

(a) LCP to RCP, (b) linear polarization to near-linear cross-polarization. The insets of (a) and 

(b) show the incident polarizations. 

 
Figure S3. Calculated Pearson correlation coefficients between the theoretical and measured 

field distributions in k-space. Insets: theoretical |E|
2
 and measured light distribution for 

Sample #1 after excluding the zero-order light. 



     

3 

 

 

Figure S4. Simulated electric distributions in real space and k-space, where the radius of the 

metasurface is set as 16 m. a) With LCP incidence, the simulated RCP field distribution at a 

cut plane with 5 m from top of the nanopillars. b) Fast-Fourier transform (FFT) of the field 

distribution in (a) performed with MATLAB. c) With RCP incidence, the simulated LCP field 

distribution at a cut plane with 5 m from top of the nanopillars. d) FFT of the field 

distribution in (c) performed with MATLAB. 

 

 

Figure S5. Comparison between the measured optical intensity with a power meter and 

with the InGaAs camera. The results show that the integrated intensity is linearly 

dependent on the actual light intensity, and the calculated R-Square parameter reaches 
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0.99977. 

S1. Function-related design 

The diffraction field distribution and total scattered energy of the metasurfaces are 

strongly related to the phase and strength of each unit cell. As shown in Figure S1, the highest 

energy corresponds to an identical phase distribution, while the energy of the diffraction field 

decreases for large phase gradients. This can be interpreted by summarizing two phase factor: 

( ) ( )i i i ii kr i kr
e e

   
 , where ri and 

ir  is the locations of two neighboring unit cells. Defining 

phase gradient i i
i

i ir r

 



 


 and position difference i ir r   , we obtain: 

( ) ( ) ( ) ( )
[1 ]i i i i i i ii kr i kr i kr i k

e e e e
         

   ,     (1) 

which means an effective wave vector i ik k   exists. This effective wave vector can be 

easily larger than k0 for large phase gradient i , leading to evanescent waves that cannot 

propagate to far fields.  

It is worth mentioning for hyperbolic media, this limitation can be relaxed since 

hyperbolic media can also manipulate large k components and evanescent waves.
[2,3] 

 

S2. Pearson correlation coefficient of the measurements 

To evaluate the quality of the measured energy distribution, we calculated the Pearson 

correlation coefficients between the theoretical and measured light distributions (Figure S3). 

The Pearson correlation coefficient is defined as
( , )

( , )
( ) ( )

Cov
corr

Var Var


X Y
X Y

X Y
, where X/Y, 

Cov(X,Y), Var(X) are an arbitrary numerical matrix, covariance of two matrices X and Y, 

variance of the matrix X, respectively. The Pearson correlation coefficient is a rigid parameter 

to characterize the linear similarity between two images. For sample #1, the Pearson 

correlation coefficient can reach a reasonable value of 0.78, considering the camera hardly 

recognizing the doughnut shape of the F2 at the focal plane. The Pearson correlation 
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coefficients are also affected by the background noises in Figure 4g-j, which can be further 

improved by elaborate control of the fabrication conditions. During the calculation of Pearson 

correlation coefficient, we excluded the zero-order light in the measured intensity matrices, 

and the covariance analysis was performed to characterize the linear dependence between the 

theoretical and measured light distributions in k-space. 
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