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Polarization plays a key role in both optics and photonics.
Generally, the polarization states of light are measured with
birefringent or dichroic optical elements paired with a power
meter. Here we propose a direct polarization detection method
based on colorimetric asymmetrical all-dielectric metasur-
faces to obtain the polarization angles of the incident light.
The independently tunable periods and diameters along the
x and y axes enables double-layer nanopillars to realize high-
performance dual-color palettes with arbitrary combinations
under orthogonal polarization states. The polarization detec-
tion network based on residual networks is used to deeply learn
the regulations between color palette variations and incident
polarization angles, which can accurately recognize extremely
slight polarization variations in about 1 s with an accuracy
of 81.4% within 0.7◦ error and 99.5% within 1.4◦ error. Our
strategy significantly improves the compactness of polarization
detection, and it can be readily expanded to polarization distri-
bution measurement and colorimetric polarization imaging on
an intelligent platform. © 2022 Optica Publishing Group under

the terms of theOpticaOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.449893

Color, the information carrier of our surroundings, has been a
powerful diagnostic tool since ancient times. Recently, colorimet-
ric sensing that utilizes output color variations to characterize the
input stimuli variations, such as refractive index, temperature,
pH, and humidity, has been a practical and low-cost way to realize
rapid and visual detection in the fields of biology, biomedicine,
and environmentology [1–3]. However, conventional colorimetric
sensing relying on special physical or chemical effects (such as par-
ticle aggregation and surface wetting) is restricted by low sensibility
of color response to weak input stimuli [4,5]. With the advances
of nanofabrication technology, metasurfaces as two-dimensional
artificial elements have brought about high-performance colori-
metric sensors in the past decade [6,7] because the interaction
between light and plasmonic or dielectric nanostructures enables
high-resolution, high-quality, and high-compactness structural

colors [8–12]. Particularly a weak extrinsic stimulus such as a
perturbation in the surrounding environment or the incident light
can readily lead to tunable structural colors [6]. For example, the
difference of refractive indices between surrounding environment
and nanostructures can yield the shifting of plasmonic or Mie
resonant peaks in the visible waveband, namely, color variations
[13,14]. Fan et al. have reported colorimetric ricin sensing based
on a nanopin-cavity resonator, exhibiting clear color variation to
visualize and recognize the concentration of ricin solutions [13].

On the other hand, the varying polarization angles of incident
light enable the asymmetric nanostructures to significantly realize
tunable colors [15,16]. By independent design of periods and
diameters along x and y axes, arbitrary combinations of dual colors
across the entire visible wavelengths under orthogonal polarization
states have been reported recently [16]. High-performance colors
can regularly change when the polarization angles vary, providing
a promising method for colorimetric polarization-angle detection,
which is essential for practical applications in modern optics, such
as communications, remote sensing, imaging, biomedical diagno-
sis, and so on [17,18]. Nevertheless, current colorimetric sensing
designs mostly rely on naked eyes to perceive colors variations,
which is hard to quantitatively analyze and limits the detection
resolution.

In recent years, deep learning has had great success in computer
science and has boosted the development of data-driven artificial
intelligence technologies such as computer vision [19,20], speech
recognition [21], and decision making [22].Recent works in pho-
tonics have demonstrated that deep learning can accurately predict
resonance spectra and perform the inverse design of photonic
devices [23,24]. It can also be used to optimize classification prob-
lems such as superhigh-resolution recognition of orbital angular
momentum [25] and accurate phase prediction for anisotropic
digital coding metasurfaces [26]. The most popular network used
in deep learning is the deep convolutional neural network (CNN),
which can be used in applications such as classification tasks [27].
He et al. [28] proposed a design of residual networks (ResNets)
that can scale up to thousands of layers and still have excellent
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performance; these are of great interest in the precise measurement
of physical quantities in photonics.

In this Letter, we realize quantitatively colorimetric
polarization-angle detection with asymmetrical all-dielectric meta-
surfaces by performing a polarization detection network (PDN)
based on ResNets. Taking advantage of the high-performance
colors resulting from index matching in SiO2 −TiO2 nanopillars
[10], we employ a PDN to analyze the color patterns of an arrayed
color palette and accurately recognize the incident polarization
variation with measured accuracy reaching 81.4% within 0.7◦

error and 99.5% within 1.4◦ error. This work could inspire new
directions in polarization detection devices, full-color polarization
display, and imaging in metasurface technology.

Figure 1 illustrates the process of colorimetric polarization-
angle detection. To obtain polarization-sensitive structural colors,
we designed asymmetric nanopillars with high-performance struc-
tural colors variation when varying the incident polarization angles
(ϕincident). An arrayed color palette with abundant combinations
of dual colors is used as input. Plenty of measured inputs under
different polarized light were collected by an automatic optical
setup, in which 69% of the data were used as the training dataset
and 31% of the data were used as test ones. Extremely slight color
variations can be recognized based on PDN, leading to colorimet-
ric polarization-angle (ϕdetection) detection. Once the network has
been trained, the polarization angle can be obtained in about 1 s.

To broaden the gamut of color switching, we designed an
all-dielectric metasurface where the TiO2 and SiO2 layers with
thickness of 200 nm (H2) and 100 nm (H1) are successively
deposited on SiO2 substrate as shown in Fig. 2(a). We fabricated
the SiO2 −TiO2 nanopillars by electron beam lithography and
plasma etching to verify the highly saturated colors. Figure 2(b)
presents the SEM images of the double-layer nanopillars in top
and side views. By independently modulating the periods (Px/Py )
and diameters (Dx/Dy ) along the x and y axes, we can realize
wide and flexible switching of colors under orthogonal polari-
zation states. The high-monochromaticity reflection spectra
with narrow peaks at resonant wavelengths and remarkably low
reflection at non-resonant wavelengths can be obtained owing
to the index matching between TiO2 and SiO2 layers in terms of
√

nTiO2 · nair ≈ nSiO2 . The SiO2 layer serves as an antireflection
layer to suppress the excitation of multipolar modes includ-
ing dipoles and quadrupoles at the non-resonant wavelengths,
resulting in high monochromaticity of the reflection spectra [10].

Fig. 1. Schematic of colorimetric polarization-angle detection. The
arrayed color palette of SiO2 −TiO2 metasurfaces changes accordingly
with varyingϕincident, which can be detected by deep learning with PDN.

Fig. 2. Highly saturated polarization-sensitive structural colors based
on SiO2 −TiO2 nanostructures. (a) Schematic of the nanopillar. (b) SEM
images of the metasurface in side and top view. (c) Simulated and mea-
sured spectra and colors patterns for three-primary-color symmetrical
pixels. (d) The three-primary-color pixels in (c) in the 1931 CIE chro-
maticity diagram. (e) Simulated and (f ) measured spectra and measured
color patterns for three-primary-color switching pixels with ϕincident

varing from 0◦ to 90◦. The gray lines represent ϕincident within 0◦ and
90◦. (g) Simulated (circles) and measured (squares) three-primary-color
switching.

The simulated and measured spectra are shown in Fig. 2(c) for
symmetrical nanostructures (Px = Py , Dx =Dy ). Three high-
quality primary colors can be realized when the period/diameter
is set as 300 nm/170 nm, 340 nm/210 nm, and 400 nm/250 nm.
The measurements show high-efficiency and narrow-bandwidth
reflection spectra with ultralow efficiency at non-resonant wave-
lengths. Although the fabricated nanopillars hold a slant cross
section on the lateral side due to the different etch resistances of
TiO2 and SiO2 layers, the measured spectra in Fig. 2(c) match
well with the simulated results. The slight redshift and reduced
efficiency of the measured spectra result from the fabrication
imperfection including etching dose, roughness of surface,
and deformation of shapes. The captured patterns of the three-
primary-color pixels in Fig. 2(c) also exhibit vivid and highly
saturated colors in the experiment, proving that the SiO2 −TiO2

nanopillars have significant superiority in realizing highly satu-
rated colors with a huge gamut. The corresponding chromaticity
coordinates of the simulated and measured results are drawn in
the 1931 CIE chromaticity diagram in Fig. 2(d), showing that
the SiO2 −TiO2 nanopillars can realize colors with a wide gamut
approaching Adobe RGB space (gray triangle) in simulation.

By meticulously designing the geometrical parameters (Px , Py ,
Dx , Dy ), arbitrary combinations of color switching covering a wide
gamut can be realized under orthogonal polarization angles. We
first design three-primary-color switching pixels (i.e., the switching
between blue and green, blue and red, green and red) under x (0◦)
and y (90◦) polarization states with the parameters (Px , Py , Dx ,
Dy ) of (280, 340, 170, 230 nm), (270, 400, 160, 290 nm), and
(330, 400, 180, 279 nm), respectively. Figure 2(e) shows simulated
spectra of the switching pixels when the incident polarization angle
varies from 0◦ to 90◦, exhibiting the reflection-peak switching
from 440 to 605 nm with high monochromaticity. We measured
the reflection spectra and imaged the color patterns with the polari-
zation angles changing from 0◦ to 90◦ [Fig. 2(f )]. The deviation
between simulated and measured spectra is attributed to the slant
cross section of the fabricated nanopillars. The effective refrac-
tive index and scattering cross section of the nanopillars will be
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decreased with increase of the gap size, resulting in splitting reso-
nant peak. According to Malus’s law, the reflection spectra follow
a sinusoidal transformation and superposition of different angles
R(ϕincident, λ)= Rx (λ)sin

2ϕincident + R y (λ)cos2ϕincident, where
Rx (λ) and R y (λ) represent the reflection spectra under x and y
polarization states. For arbitrary linear polarization angles, the
corresponding color is a mixing of the initial colors under x and y
polarization states with specific proportion as a function ofϕincident.
As the simulated (dots) and measured (squares) chromaticity coor-
dinates show in the 1931 CIE diagram [Fig. 2(g)], switching of
colors with ultrahigh saturation can be realized, significantly cover-
ing a wide gamut. The polychrome lines with dots in the 1931 CIE
diagram show that the structural colors regularly switch when the
incident polarization angles change from 0◦ to 90◦. Therefore, the
color variations generated from the asymmetrical nanopillars can
be used as a medium to characterize the polarization angles of linear
incident light, namely, colorimetric polarization-angle detection.

To increase the resolutions of color variations and improve
the detection accuracy when the polarization angle changes, we
fabricated a color palette with abundant combinations of color
switching based on the SiO2 −TiO2 nanostructures. 7× 7 sam-
ples with width of 25 µm were fabricated, in which the periods
gradually increase from 280 to 400 nm with a 20 nm increment
along the x and y axes, respectively. The CCD camera and brushed
motor controlling ϕincident were connected by the software of
Labview to automatically capture the color palettes for different
polarization states. Three different illuminants including xenon
(Xe) illuminant, bromine tungsten (Br-W) illuminant, and D50
illuminant were respectively applied to enrich the dataset in the
experiment. The captured images are shown in Fig. 3 when the
polarization angles are 0◦, 45◦, and 90◦, indicating vivid and mas-
sive color switching under distinct incident polarization states. For
instance, when the incident polarization angles vary from 0◦ to
90◦, the color patterns in the white dashed box switch from blue to
aquamarine blue, blue to green, and blue to red. We collected an
abundant dataset including 1801 (polarization angles varying from
0◦ to 90◦ with a 0.05◦ step)×3 (three different illuminants) images
of color palettes for deep learning.

PDN, whose main structure is consistent with that of Res-34
[28], is employed to quantitatively learn the relations between
ϕincident and color variations. As shown in Fig. 4(a), the designed

Fig. 3. Measured color palettes of arrayed samples with varying periods
(Px , Py ) and diameter (Dx , Dy ) under (a) Xe, (b) Br-W, and (c) D50
illuminant withϕincident of 0◦, 45◦, and 90◦.

network consists of many stacked residual blocks, and the distribu-
tion of residual blocks can be summarized as 3× 3 Convolution
(Conv) - Batch Normalizing transform (BN) - Rectified Linear
Unit (ReLU)–3× 3 Conv–BN–ReLU. The conv0 layer cor-
responds to the sequence 7× 7 Conv (2 strides)–BN–ReLU.
After the conv0 layer and a max pooling (MP) layer with two
strides, the input then passes through four blocks. The number
of residual blocks of each block are {3, 4, 6, 3}, respectively. Each
Conv layer in the kth block can produce 64× 2k−1 feature maps.
The feature-map sizes in the four blocks are 28× 28, 14× 14,
7× 7, and 4× 4. The PDN ends with a global average pool-
ing (GAP) layer and a 129-way fully connected (FC) layer. We
employed a cross-entropy loss function of the form loss(x , class)=
− log( exp(x [class])∑

j exp(x [ j ]) )=−x [class] + log(
∑

j exp(x [ j ])), where

x is the output and class is the true label of the input image. The
color palettes are down sampled to 112× 112 pixels as input of
the PDN. The full dataset contains 1801 polarization angles and
is divided into classes at intervals of 0.7◦, i.e., class j = b

ϕincident,i
0.7 c.

We use the adaptive moment estimation (Adam) optimizer with
the batch size of 124 for 4380 iterations. The initial learning rate is
set to be 0.0001, which is lowered by 10 times and 5 times at 1200
and 2700 iterations, respectively. We trained our PDN network on
a single Quadro RTX 6000 GPU with a weight decay of 0.00001.
The number of images in the training set and the test set are 3720
and 1683, respectively. In each iteration, we randomly selected
124 data from the test dataset to calculate the loss function and
prediction accuracy of the test set. The loss function values of the
training dataset and test dataset in Fig. 4(b) indicate that the loss
can be reduced to 0.5 after 4380 iterations. After training, we input
the test dataset separately into PDN for evaluating the classifi-
cation performance. Taking classes from 91 to 98 as an example,
the confused matrix in Fig. 4(c) shows the predicted polarization
angles of the test dataset, which consists of 12, 13, 12, 14, 14, 13,
16, and 14 images to be tested. It can be seen that a large propor-
tion of tested polarization angles are correctly recognized. Other
color bases, such as Cyan-Magenta-Yellow (CMY) or even the
mixture of RGB and CMY, can also realize polarization detection
by delicately adjusting the nanostructure designs with anisotropic
color responses. The errors are caused mainly by the classification
boundary, such as 0.69◦ and 0.7◦. Although the two angles are very
close, they belong to different categories, leading to an increased

Fig. 4. (a) Sketch map of PDN to learn the relations between
color variations of palettes and ϕincident. (b) The loss curves of training
dataset (blue line) and test dataset (red line) as a function of iterations.
(c) Confusion matrix from 91 (63.7◦) to 98 classes (68.6◦) of the test
dataset. (d) The proportions for the training dataset and test dataset for
different detection errors.
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error. As a result, it predicts the polarization angles with an accuracy
of 99.4% within 0.7◦ error (100% within 1.4◦) for the training
dataset and 81.4% within 0.7◦ error (99.5% within 1.4◦ error) for
the test dataset [Fig. 4(d)]. The percentage of the training dataset is
chosen to be 69% to keep the error of the test dataset in the range
of 0◦ to 2.1◦. The polarization detection accuracy is decided by
the RGB sensitivity to the polarization angle. The larger the RGB
gradient for polarization angle, the greater the detection accuracy.
The absolute polarization-angle detection can also be achieved in
our scheme. The corresponding accuracy is decided by the amount
of datasets and the calibration precision in the experiments, i.e., the
accuracy of the electric rotary stage 0.05◦. Our method can be
implemented under a fixed incident angle range to eliminate
the spectra uncertainty originating from different incident angles.
We used an objective (NA= 0.3 corresponding the incident angle
from 0 to 17.5◦) to illuminate and collect light, which guarantees a
lack of obvious fluctuations for the bright colors.

In conclusion, we propose quantitatively a colorimetric
polarization-angle detection method empowered by PDN based
on asymmetrical all-dielectric metasurfaces. The index matching
in SiO2 −TiO2 nanopillars can suppress the multipolar-mode
resonances at non-resonant wavelengths, leading to highly sat-
urated structural colors with a wide gamut. By independently
and meticulously designing the periods and diameters along the
x and y axes, the color palettes consisting of abundant dual col-
ors can be obtained to meet the incident polarization angles. By
performing PDN based on ResNets in deep learning to recognize
extremely slight color variations, the colorimetric polarization-
angle detection is realized in about 1 s with an accuracy of 99.4%
within 0.7◦ error (100% within 1.4◦) for the training dataset and
81.4% within 0.7◦ error (99.5% within 1.4◦ error) for the test
dataset. Our approach can also be expanded to elliptically polarized
incident light by using structural colors that respond to different
elliptically polarized light, such as chiral structural colors that
hold different near-field interferences or resonances for different
polarizations. The generalization ability and prediction accuracy
of the network can be further improved by increasing the amount
of data in the training set and the depth of PDN. Our approach
provides a new paradigm for polarization detection and can be
potentially applied in various applications such as polarization
encoded communications, fast diagnosis, and wearable intelligent
devices.
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