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have emerged as a versatile platform for 
the implementation of novel optical func-
tionalities, multi-functional integration, 
arbitrary wavefront manipulation, and 
optical multiplexing.[3–6] The remarkable 
progresses in metasurfaces in the past 
decade spurred a revolution of multidi-
mensional optical wavefront manipulation, 
which amply demonstrated the advantages 
of metasurfaces for many useful applica-
tions, such as optical cloaking,[7,8] vortex 
and vector beam generation,[9,10] optical 
hologram,[11,12] and optical focusing.[13,14]  
Particularly, metasurface-based holography, 
named meta-holography, has attracted  
tremendous interest since it can signifi-
cantly improve the resolution, quality, 
diffraction angle, and field of view of the 
holograms.[15–20] High-efficient meta-holo
grams have been well demonstrated in 
both metallic few-layer metasurfaces and 
lossless dielectric metasurfaces.[21–23]

Multicolor meta-holography, which can 
store and reconstruct wavefront information of optical waves 
at multiple wavelength channels, has received a burgeoning 
amount of interest in recent years since it is invaluable for 
colorful image display. The critical challenge of multicolor 
meta-holography is how to realize the independent wavefront 
manipulation at different wavelength channels. Overall, there 
are three main approaches: One way is to utilize the k-space 
frequency multiplexing, in which a single phase profile is 
used to reconstruct multiple holographic images at all wave-
length channels, and the superposition of selected holographic 
images in different channels at a certain position is realized by  
off-axis illumination or diffraction.[24–26] The main disadvan-
tage of this approach is that the unwanted holographic images 
can be observed in other spatial position. The second method 
involves polarization multiplexing. The target images at  
different wavelength channels are stored in different polariza-
tion channels.[27] Therefore, extra polarization analyzer is essen-
tial for the reconstruction of the colorful holographic images. 
The last and the widely used approach is utilizing the super 
unit cell composed of several nanostructures with wavelength-
dependent resonances to store different wavefront informa-
tion.[28–32] Although the enlarged period of the unit cell slightly 
reduces the quality of the hologram, this approach is still desir-
able since it is concise and easy to implement than the other 
two methods. To realize the multicolor meta-holography with a 
high quality, the crosstalk between different wavelength chan-
nels should be eliminated. Therefore, how to obtain the nano-
structures with on-demand resonance wavelength, bandwidth, 
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1. Introduction

Metasurfaces are planar arrays composed of subwavelength 
artificial nanostructures, which have the merits of arbitrary 
manipulation of the amplitude, polarization, and phase of 
optical waves.[1,2] Thanks to their unprecedented capacities for 
multidimensional manipulation of optical waves, metasurfaces 
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and phase delay is a critical question. However, the primary 
mean for the optimization of nanostructures is an iterative pro-
cess of trial and error based on numerical simulation, which 
is time consuming and inefficient for such a multi-objective  
optimization target.

Recently, deep-learning (DL) has attracted much attention  
in nanophotonics since it can realize the quick design of 
nanostructures with desired optical responses and is efficient 
for multi-objective optimization problem.[33] The remarkable 
capabilities of DL have been well demonstrated in domains 
including computer vision,[34] speech recognition,[35] and  
decision making.[36] Its superior performance comes from its 
ability to automatically extract features from large amounts of 
data layer by layer and discover the intricate, nonintuitive rela-
tions between the data. DL has been used to accurately predict 
optical resonance spectrum and perform inverse optimiza-
tion of photonic nanostructure.[37–41] The computational speed 
of DL is several times faster than conventional numerical 
simulation, thus greatly improving the speed of optimization  
procedure. Hence, DL is an appealing alternative to realize the 
inverse design of nanostructures with on-demand resonance 
wavelength, bandwidth, and phase delay, which enable colorful 
meta-holography with low crosstalk and high efficiency.

Here, we demonstrate the use of a DL framework for the 
inverse design of dielectric nanostructures with on-demanded 
resonance wavelengths, bandwidths, and phase delays, and 
the realization of the multicolor meta-holography. The hybrid 
framework consists of a deep neural network (DNN) and 
an evolution strategy (ES) algorithm. The DNN is trained to 
directly connect the structural parameters of nanostructures 
to their complete optical responses, while the ES algorithm is 
used to retrieve the structural parameters of nanostructures 
for the given optical responses. Our inverse design method 
can produce suitable structural parameters of nanostructures 
to fulfill the requirements, such as operating wavelength, reso-
nance bandwidth, resonance phase, etc. The proposed hybrid 
framework is a promising candidate for automatic, rapid design 
of optical multiplexing metasurfaces with multiple wavelength 
channels.

2. Results and Discussion

Figure 1a shows the artistic rendering of the inversely designed 
all-dielectric metasurfaces for multicolor meta-holography. 
In order to improve the degrees of design freedom of nano
structures and eliminate the crosstalk between different wave-
length channels, the unit cells in the designed metasurface are 
composed of two kinds of anisotropic dielectric nanostructures 
that can manipulate the amplitude and phase of optical waves 
at a certain operation waveband at the subwavelength scale. 
The designed holographic image contains an image of flower 
of red, green, and blue colors, which can be reconstructed 
with low crosstalk under the x-polarized white light illumina-
tion composed of 470, 550, and 610 nm laser beams. As shown 
in Figure  1b,c, the two kinds of anisotropic dielectric nano
structures are Titanium dioxide (TiO2) nanorods and dimers. 
The structural parameters of nanorods are described by a para-
meter array Drod = [px,py,h, l, w], while the structural parameters 
of the dimer structures are described by the other parameter 
array Ddimer = [px,py,h, l1,l2,l3,l4,w1,w2].

In order to train the DNN to predict the optical responses 
of these two kinds nanostructures, 17 600 samples of nanorods 
and 17 000 samples of dimer nanostructures were built based 
on the numerical simulation. Every sample contains the struc-
tural parameters of the nanostructure represented by the  
corresponding parameter array and its reflection coefficient Sxx 
composed of both the real part (Sreal) and imaginary part (Simag) 
with a dimension of 1 × 201. The reflection coefficient Sxx was 
obtained by numerical simulation over a wavelength span from 
400 to 800  nm that covers the visible spectral range. For the 
purpose of improving the fitting effect, the Principal Compo-
nent Analysis (PCA) method was used in the proposed hybrid 
framework to reduce the dimension of Sreal and Simag. First, the 
dimensions of the two matrices Sreal and Simag are changed to 
1 × 500 by interpolation. The two matrices are then transformed 
into low-dimensional feature arrays freal and fimag based on PCA 
method. For the two kinds of nanostructures, there are two 
independent neural networks to train freal and fimag respectively. 
Figure  1d shows the architecture of the DNN model, which 
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Figure 1.  a) An artistic rendering of the inversely designed all-dielectric metasurfaces for multicolor meta-holography, which can be reconstructed under 
the x-polarized white light illumination composed of 470, 550, and 610 nm laser beams. Two kinds of anisotropic dielectric nanostructures that make 
up the metasurface: b) the nanorod and c) the dimer. d) The architecture of DNN that takes device designs and PCA features as inputs and outputs 
respectively.
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is a fully connected network with four hidden layers. Every 
hidden layer contains 500 neurons, and every layer between 
the input layer and the last hidden layer is preceded by a recti-
fied linear unit (ReLU) activation function. To further expound 
the training process of the DNN, we take the DNN for the pre-
diction of the freal of the nanorod as an example. The input of 
DNN was a 16 × 5 geometric parameter matrix, and the output 
was a matrix with size 16 × 50, where 16 is the number of the 
batchsize. We used 85% of the simulated data for training and 
the remaining 15% for testing. The mean absolute error (MAE) 
is used to represent the loss function between the network’s 

output and freal, and the specific form is Loss
1

output
21

real∑= −
=m
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The weight parameters of DNN are trained using an Adaptive 
Moment Estimation (Adam) optimizer, and the weight delay 
is set to be 10–5. The initial learning rate is 10–4, and is low-
ered by ten times at epoch 300. After 400 epochs, the training 
of the network is completed, and the loss function values of 
the corresponding training dataset and test dataset are stable at  
0.028 and 0.040, respectively. The architectures of the other three 
networks are the same as the one shown in Figure  1d, which 
were trained with the same process. All the DNN were trained 
by using a computer with a single 6GB GPU (GTX 1660 Ti),  
and the training process of each network takes 30  min. The 
hyperparameters and learning curves of all networks can be 
founded in Table S1 and Figure S1 (Supporting Information).

To validate the performance of the well-trained DNN, we  
randomly selected two sets of data from the test sets of the two 
structures to evaluate the prediction accuracy of the DNNs. The 
predicted results of Sreal, Simag, the square of the amplitude (S), 
and the phase (P) of Sxx for a nanorod are shown in Figure 2a–d 
respectively, while those of a dimer nanostructure are shown in 

Figure 2e–h. The square of the amplitude (S) and phase (P) of 
Sxx can be expressed as:

SS SS SS= +real
2
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The predicted results in Figure  2 are in good agreement 
with the simulated ones. The errors between the predicted 
and the simulated results at some frequencies can be mainly 
attributed to the information loss during the process of matrix 
dimension reduction since the spectra reconstructed by PCA 
method cannot perfectly fit the initial simulation results  
(see Figure  S2, Supporting Information). At the meantime, 
there are errors between the prediction features and the real 
PCA features, which is also contributed to the errors between 
the final reconstructed spectra and the actual simulated result. 
For the test dataset of nanorod, the MAE losses between the 
predicted and simulated results of Sreal, Simag, S, and P are 
0.0197, 0.0195, 0.0173, and 0.129  rad, respectively, while those 
for the test dataset of dimer are 0.0204, 0.0209, 0.0149, and 
0.180  rad, which validates that the DNNs can achieve high-
precision prediction for most of the test data and replace the 
time-consuming numerical simulation process to achieve fast 
prediction of the amplitude and phase values of x-polarized 
reflection waves for the two kinds nanostructures.

We further design an ES algorithm to realize the inverse 
design of nanostructures with on-demand resonance wave-
length, bandwidth, and phase delay. The advantages of ES algo-
rithm over other deep-learning inverse design methods based 
on gradient descent method is that it doesn’t relies on the 
gradient information and is helpful for complex optimization 
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Figure 2.  The quantitative analysis on the performance of the well-trained DNNs. a–d) The predicted (red dot line) and the simulated (black dot line) 
results of Sreal, Simag, S, and P of a nanorod structure. e–h) The predicted (red dot line) and the simulated (black dot line) results of Sreal, Simag, S, and 
P of a dimer structure.
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problems. ES algorithm is a numerical optimization algorithm 
which imitates the survival process of biological evolution. 
The process of EM can be described as: a large initial popula-
tion as the parent is generated first, then some individuals in 
the initial population are recombined and mutated to produce 
a certain number of offspring. The offspring and initial popula-
tion will form a new population. After that, the fitness function 
values of all the individuals in the population are calculated. 
The individuals with good scores can continue to enter the next 
round of evolution, and the individuals with poor scores will be 
eliminated. In the end, the whole population will evolve in the 
on-demand direction. To realize the inverse design of the two-
kinds of nanostructures, we implement the ES method based 
on DNN in the form of matrix operation, which can complete 
hundreds of data calculations in a few seconds, greatly reducing 
the time cost of inverse design, and also provide convenience 
for the optimization of various complex problems. As shown 
in Figure 3a, the initial population in the ES algorithm for the 
inverse design of nanorod is a matrix with dimension of 500 × 5 
(for the inverse design of dimer nanostructure, the dimension 

is 500  ×  9). The rows of the matrix represent the individuals 
in the population. The dimension of the mutation matrix is in 
consistent with the that of the population matrix. Every row in 
the mutation matrix can be expressed as a 1 × 5 array M, where 
MM M M M M Mp p h l wx y

= [ , , , , ]. Each element of M is a random 
number with standard normal distribution, which can realize 
the random evolution of structural parameters. Two rows of the 
population matrix are randomly selected, and the elements in 
the two rows are randomly exchanged (the mutation matrix is 
also exchanged in the same way) to generate an offspring in the 
recombination process. The offspring contains the information 
of two parent individuals, and then it needs to mutate according 
to the mutation factor. The formula can be expressed as:

MM MM ai
j

i
j= − −max( 0.8,0) 	 (3)

DD DD MMbi
j

i
j

i
j= + 	 (4)

where a and b are random numbers following a standard 
normal distribution. By repeating the above-mentioned pro-
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Figure 3.  a) Schematic of the modules of the hybrid framework. In each iteration, populations undergo recombination and mutation to produce off-
spring. The ES algorithm uses matrix operation to calculate the scores of all individuals in the population, and then select the best individuals to move 
on to the next round of evolution. Panels (b) to (g) are predicted reflection spectra of nanostructures designed by ES algorithm. Panels (h) to (m) 
are simulated reflection spectra of nanostructures designed by ES algorithm. Panels (n) to (s) are experimental reflection spectra of nanostructures 
designed by ES algorithm. The parameters of all structures in this figure can be found in Table S2 (Supporting Information).
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cess, we get an offspring with 200 individuals and the dimen-
sion of the population matrix is 700  ×  5. Then, we input the 
population matrix into the DNN, and obtain the amplitude and 
phase spectra of the reflection waves. The predicted results are 
two 700  ×  201 matrices. Each row of the two matrices is the  
predicted arrays of the amplitude and phase spectra for the 
reflection waves corresponding to the parameter array of  
the population matrix. The resonance wavelength and band-
width are inversely designed by fitting a Gaussian-like spectral 
line that can be expressed as:

( )
1

2

( )

2

2

2

σ π
=

µ
σ

−
−

g x e
x

	 (5)

where μ and σ control resonance wavelength and bandwidth 
respectively. The fitness function is:
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where m is the number of elements in S. Si and gi are the i ele-
ment in S and g. We rank the population matrix according to 
the value of the fitness function from the lowest to the highest 
by calculating the fitness function. The last 500 rows in the 
matrix are taken as the population for the next evolution after 
sorting. After 50 iterations, we can get the optimal geometric 
parameters, which only takes a few seconds. Specially, we 
can limit the range of structural parameters of the population 
according to the fabrication accuracy. For example, in order to 
achieve one-step fabrication, we can fix the value of h and opti-
mize the remaining parameters.

To show the performance of the proposed hybrid frame-
work, we set three Gaussian-like target spectra for the inverse 
design of the nanorods with resonance wavelengths of 450, 500, 
and 550 nm, respectively, whose bandwidths are about 35 nm. 
Meanwhile, for the inverse design of the dimer structures, the 
resonance wavelengths of the three Gaussian-like target spectra 
are 550, 600, 650  nm, and the bandwidths are also 35  nm. 
Figure 3b–s shows the predicted, simulated, and experimental 
results of the reflection spectra of the inversely designed 
nanorods and dimer structures. The reflection spectra of the 
inversely designed samples were measured by using a home-
built optical setup, see Figure  S3 (Supporting Information). 
The results in Figure  3b–g indicate that the resonance wave-
length and bandwidth of the reflection spectra of the inversely 
designed nanostructures are in consistent with the design tar-
gets. The experimental results are in reasonable agreement 
with the predicted and simulated results, which further validate 
the efficiency of the inverse design method. Although the reso-
nance wavelength in the experimental results show a red shift 
and the reflection efficiency decreases, the reflection spectra of 
the fabricated samples are close to our expectations and display 
the designed color. The differences between the simulated and 
experimental results are due to the following reasons: First, the 
red shift of the resonance wavelength is attributed to that the 
fabricated nanostructures are little larger than the designed 
ones. Meanwhile, the decrease of the reflection efficiency is 
due to the rough top surface of the TiO2 nanostructure that is 
caused by an inadequate exposure dose of the electron beam 
lithography. Note that the simulated results were obtained 

under normal illumination while the experimental results were 
measured over a finite incident angle, which also causes the 
differences between the simulated and experimental results. 
In order to verify the bandwidth control effect of our method, 
we further compared the inverse design results under different 
fitness functions and bandwidths (Figure S4, Supporting Infor-
mation). The results validate that our method can obtain the 
most ideal structural parameters according to different target 
bandwidths. Meanwhile, we can effectively improve the reflec-
tance at the target wavelength by changing the fitness function, 
which is quite beneficial for the designing of high-efficiency 
structural color devices.

Importantly, our method is effective for multitask optimiza-
tion. To make a proof of concept, we designed phase modu-
lated nanostructures at 470, 550, and 610  nm to reconstruct a  
multicolor holographic image. In the inverse design process, 
the bandwidth (25  nm) and resonance wavelengths (470, 550, 
and 610 nm) of the spectra are still designed by giving a Gauss-
ian-like spectral line. In order to simultaneously modulate the 
resonant wavelength, bandwidth and phase, the fitness func-
tion needs to be changed:

( , )
1 1
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1

31
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F S g
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where PPre./PTraget and rPre./rTraget are the predicted/target phase 
and reflection values at the target wavelength. Four basic 
nanostructures with different phase delay effect are inversely 
designed for every wavelength. The phase modulated nano-
structures are designed with a fixed height and limited value 
range of period with the consideration of the manufacturability 
of the metasurface. The period in both the x and y directions 
of every nanostructure is restricted to a common divisor of the 
pixel size (6 µm) of the designed metasurface, while the height 
of all nanostructures is fixed at 300 nm to realize a high reflec-
tance. As shown in Figure 4, the reflectance of most inversely 
designed nanostructures at the resonance wavelengths are 
close to 100%, while their operation bandwidths are narrow 
that results in the elimination of the crosstalk between the 
three designed wavelengths. We used the inversely designed 
nanostructures to realize the multicolor meta-holography. The 
information of a multicolor holographic image was stored in 
a designed metasurface composed of the two kinds of nano-
structures (12 basic structures) by using Gerchberg–Saxton 
(GS) algorithm, as shown in Figure 5a. We get the phase dis-
tribution of the three channels first, then we integrate the 
three independent phase distributions together to get the final 
phase profile. Specially, since the size of the holographic image 
is related to the wavelength of the optical waves, the colorful 
images is scaled correspondingly in the process of hologram 
design. The scaling factor kλ of the three channels should sat-
isfy the following relationship: 1 2 31 2 3λ λ λ= =λ λ λk k k . More details 
of the designed phase distribution can be found in Figure  S5 
(Supporting Information). It is important to note that, since the 
value range of the nanostructure height and period are limited 
in the inverse design process, the four phases selected at each 
wavelength do not cover the entire 2π phase space, as shown in 
Figure 4g–l. For example, it is difficult to obtain a nanostructure 
in which the phase delay equals to 180° at 470 nm, or 108° at 
550  nm, or−108° at 610  nm. Therefore, we used a modified 

Adv. Optical Mater. 2022, 2102628
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two-level phase distribution that can be treated as a two-level 
(0 and π) phase distribution with two additional phase options. 
The intensity of the conjugate image is suppressed compared 
with the pure two-level phase distribution. In order to avoid the 
influence of zero order light on the imaging plane, we use the 
off-axis design. The final image is designed to generate on the 
right side of zero order light. Figure  5b presents the top-view 
scanning electron microscope (SEM) images of the designed 
metasurface, which contains 240  ×  240 pixels and each pixel 
is composed of at least 15 × 15 nanostructures. The multicolor 
holographic image was reconstructed and measured based on 
a home-built setup, as shown in Figure 5c. Three laser beams 
were combined together by a beam splitter BS1, and a pair of 
lenses (L1 and L2) was used to expand the laser beam. Polarizer 
(P1) was used to make the laser beam linear polarized, then the 
beam passed through the other beam splitter BS2, and illumi-
nate on the metasurface. The reflected light of the sample was 
shunted to the other side by BS2, and the reconstructed image 
can be captured directly by a CCD camera at the focal plane 
of lens L3. Figure 5d–k shows the calculated and experimental 
reconstructed holographic images. There is a certain crosstalk 
between the wavelength channels of 470 and 610 nm in the cal-
culated results. The image of flower designed at 610 nm can be 
observed at 470 nm. This crosstalk can be attributed to that the 
inversely designed nanostructures with operation wavelength 

of 610  nm have nonzero reflection intensities at 470  nm, as 
shown in Figure  4c,f. Although the calculated results show a 
low crosstalk between different channels, the measured images 
of flowerpot and flower appear at 550 nm. Since the measured 
reflection spectra show certain differences compared with the 
simulated results in Figure  3, the crosstalk at 550  nm can be 
attributed to the size error of the fabricated sample. This results 
that the units corresponding to the blue part and red part still 
have high reflectivity at 550  nm. Meanwhile, additional back-
ground noises caused by the mutual coupling between different 
nanostructures at the boundaries of the pixels also lower the 
quality of the reconstructed holographic image. We can see 
the existence of conjugate images in both the calculated and 
experimental results, as we mentioned above, which is caused 
by the insufficient phase space value limited by the fewer struc-
tural configuration selection in the inverse design algorithm. 
The conjugate image can be further eliminated by increasing 
the modulated phase range via designing structures with com-
plex shapes or relaxing the limitations on the nanostructures 
height and period. A detail discussion on the maximum phase 
and amplitude coverage of the nanostructures designed by the 
proposed inverse design method can be found in Figure  S6 
(Supporting Information). The experimental results further 
prove the effectiveness of our ES inverse design method. The 
designed metasurface can achieve high-efficient structural color 
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Figure 4.  Panels (a) to (c) are predicted reflection spectra of the units designed by ES algorithm at three target wavelengths, respectively. Panels (d) 
to (f) are simulated reflection spectra of the units designed by ES algorithm at three target wavelengths. Panels (g) to (i) are the predicted phase 
curves of the units designed by ES algorithm at three target wavelengths. Panels (j) to (l) are the simulated phase curves of the units designed by ES 
algorithm at three target wavelengths. The structural parameters and phase values at the three target wavelengths can be found in Tables S3 and S4 
(Supporting Information).
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under white light illumination, and it can generate color meta-
holography under laser illumination.

3. Conclusion

In conclusion, we proposed an inverse design method based on 
DNN and ES algorithm to realize the inverse design of dielectric 
nanostructures with desired resonance wavelength, bandwidth, 
and phase delay. Compared with other inverse design method, 
the main advantage of the proposed method is that it does not 
need gradient information and can achieve multi-objective  
optimization. The combination of ES method and neural  
network also solves the problems of slow speed and large amount 
of computation in traditional ES algorithm. We have numeri-
cally and experimentally validated that the proposed method 
can be used to realize the inverse design of nanostructures 

with on-demand structural colors and implement the multi-
color meta-holography. The proposed inverse design method 
provides a promising candidate and can be widely used for the 
design of frequency multiplexing metasurface.

4. Experimental Section
Sample Fabrication: The proposed metasurface sample was fabricated 

on quartz wafer. A layer of positive electron beam resist (EBR) with a 
thickness of 300  nm was spin-coated on the substrate. Then, a thin 
conductive polymer Espacer was spin-coated to avoid charging effects 
during electron-beam writing. Next, the structure patterns were exposed 
by an electron beam lithography (EBL) system (JEOL 6300FS) at 100 kV. 
After EBL, the Espacer was rinsed with deionized water and sample was 
developed in MIBK:IPA = 1:3 for 3 min under gentle agitation. The TiO2 
was deposited onto the exposed EBR through atomic layer deposition. 
And a blanket film of TiO2 was removed with reactive ion etching using 
a mixture of CI2, BCI3, and Ar gas. After the resist was removed by PG 
remover, the TiO2 sample was created.

Figure 5.  a) The flowchart of the GS algorithm to generate the phase profile. FFT is the fast Fourier transform and IFFT is the inverse fast Fourier 
transform. b) SEM image of the metasurface. c) Schematic illustrating the home-built setup to generate the holographic image. Using one beam 
splitter (BS1), three lasers beam (470, 550, and 610 nm) can be combined together. Two lenses (L1 and L2) are used to modify the spot of layer beam. 
The polarization of the laser can be changed into linear polarization by polarizer P1. And the beam splitter (BS2) can branch the reflected light of the 
samples to the other side, then the holographic image can be reconstructed at the focal plane of lens L3, which can be recorded directly by a CCD 
camera. Panels (d) to (g) are holographic reconstruction images obtained by calculation at different wavelengths. Panels (h) to (k) are experimental 
holographic reconstruction images obtained at different wavelengths.
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Numerical Simulation: The required data over the operating 
spectrum were calculated using the numerical simulation package 
CST Microwave Studio, with the unit cell boundary condition applied 
for all nanostructures in both x and y directions and open boundaries 
implemented in both the negative and positive z-directions. In all 
the simulations, the refractive index of SiO2 substrate was set at  
1.5, and the extinction coefficients of it can be negligible. The optical 
parameters of TiO2 are taken from ref. [42]. The center of the nanorod 
was located at (0,0), and the centers of the two structures in the dimer 

were located at (− 1
4

px,0) and (1
4

px,0) respectively. The value ranges of 

nanorod parameters were (unit: nm): px  ∈ [250, 400], py  ∈ [250, 400], 
h ∈ [150, 400], l ∈ [50, px-50], w ∈ [50, py-50]. The value ranges of dimer 
parameters were: px ∈ [280, 500], py ∈ [280, 500], h ∈ [250, 500], l1 ∈ [35, 
1
4

px-35], l2 ∈ [35, 1
4

px-35], l3 ∈ [35, 1
4

px-35], l4 ∈ [35, 1
4

px-35], w1 ∈ [70, py-70],  

w2 ∈ [70, py-70].
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