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Topological insulators, which are insulating in the bulk and conducting on the surface, have attracted great
interest in recent years. The recently discovered topological surface and hinge states in three dimensions have
provided promising methods for wave manipulation in classical systems. However, the combination of surface
states and interface states has yet to be achieved in phononic crystals due to the missing topological surface states.
Here, we experimentally demonstrate a fragile topological insulator with a bilayer kagome lattice. We observe
the surface states in three different orientations and interface states formed by inversion of layer pseudospin
sectors or bands. The combination of surface and interface states is investigated in X-shaped waveguides. Our
work may provide a platform for exploring unique acoustic applications based on surface or interface states.
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I. INTRODUCTION

Topological insulators that support robust energy trans-
port in the presence of disorder and defects have attracted
great interest in condensed-matter physics and have been
extended to photonics [1–6], acoustics [7–10], and mechan-
ics [11,12]. They have shown great potential for applications
in two-dimensional (2D) systems such as robust waveguides,
splitters, lasers [13], and directional antennas [14]. One way
of generating topological effects is based on the analogy to
fermionic time-reversal symmetry and spin-orbit coupling. In
2D acoustic topological insulators, fermionic time-reversal
symmetry is provided by crystal symmetry, which behaves
in the same way as time-reversal symmetry in electronic
systems and renders the Kramers doubling. Pseudospin up
and down are defined corresponding to positive and negative
angular momenta of the wave function. The implementation
of pseudospin was realized using acoustic scatterers [7,15]
and coupled waveguides [16]. Beyond purely 2D structures,
bilayer spin-Chern structures implement pseudospin by defin-
ing layer pseudospin up and down for the upper and lower
layers [9,17]. The bands below the band gap can be projected
in two spin sectors which carry opposite spin-Chern numbers.
As they require neither any symmetry nor the presence of a
fermionic time-reversal operator, they can realize helical edge
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states on the boundaries or surfaces. Recent research has also
observed spectral flow under twisted boundary conditions in
the bilayer system as a signature of the fragile topology de-
fined by the theory of topological quantum chemistry [18,19].
Fragile topological bands can be trivialized by a set of bands
arising from an atomic limit, which challenges the conven-
tional notion of topological robustness.

The research on topological acoustics in three-dimensional
(3D) structures first focused on topological semimetals, in-
cluding the research on Weyl points [20–22], 3D Dirac
points [23–25], nodal lines [26,27], and nodal surfaces [28].
Breaking the symmetry in topological semimetals can give
rise to topological gaps in three dimensions. In particular,
3D topological insulators can be achieved by breaking the
spatial symmetry in 3D Dirac materials [29,30]. While 2D
topological insulators host one-dimensional (1D) topological
edge states and zero-dimensional (0D) corner states, 3D topo-
logical insulators can exhibit 2D topological surface states, 1D
hinge states, and 0D corner states. Although the topological
crystalline insulators in photonic systems differs from the
“strong” and “weak” topological insulators in electric sys-
tems, the analogs of weak topological insulators have been
realized with dielectric metamaterials [31] and 3D arrays of
metallic split-ring resonators [32]. Acoustic analogs of weak
topological insulators have been realized with bilayer chi-
ral structures [33], where hinge states were further achieved
through Kekulé distortion. The appearance of 2D Dirac cones
in the domain wall is typical in these classical systems. How-
ever, the helical surface states on the side surfaces were not
taken into account in acoustic or photonic 3D topological
insulators. Here, the surface states are formed with a hard
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FIG. 1. (a) Photo of the acoustic fragile topological insulator. (b) Top view and (c) unit cell of a kagome lattice as the complement structure
of (a). The kagome structure is demonstrated by dashed lines connecting the centers of cavities in (b). The structure parameters are a = 22 mm,
r = 4.4 mm, d1 = 1.65 mm, d2 = 2.75 mm, and w = 3.03 mm. (d) BZ for the unit cell. (e) Simulated band dispersion of the acoustic crystal.
A 3D Dirac point is formed when d1 = d2. Here, d1 = d2 = 2.2 mm. (f) Simulated dispersion of the acoustic topological insulator. The blue
region represents the complete topological band gap.

boundary, which is distinct from the interface states on the
interface or domain wall between two crystals. The role of the
fragile topology in forming the surface or interface states in
3D topological insulators is unclear. The transport behavior
between the surface and interface has not yet been explored.

In this work, we report a 3D acoustic topological insulator
consisting of a bilayer kagome lattice. By tuning the inter-
layer coupling, a full acoustic band gap is created by lifting
the 3D Dirac degeneracy. We demonstrate the appearance of
surface states confined to the hard boundaries and interface
states confined to the domain wall between two topologically
distinct acoustic crystals. Surface states are observed in three
different orientations, in which the surface states at the side
surfaces are layer pseudospin polarized. Various kinds of in-
terface states are achieved by tuning the interlayer hopping
strength and chiralities. The mechanism behind the interface
states is the inversion of pseudospin sectors or bands. The
layer-pseudospin-polarized surface or interface states beyond
the band inversion mechanism were not covered in previous
works. We focus on the interaction between the surface and
interface states in X-shaped waveguides. By combining these
topological states, acoustic wave propagation can be manipu-
lated in a variety of different ways.

II. MODEL AND METHODS

The acoustic crystal shown in Fig. 1(a) is fabricated by
3D printing acoustically hard walls around the air volume

shown in Figs. 1(b) and 1(c). The Brillouin zone (BZ) of
the unit cell is shown in Fig. 1(d). The acoustic crystal
has 25 × 13 × 15 periods in the x, y, and z directions. The
acoustic crystal has an AA stacking of cavities in a kagome
lattice, connected by air channels with alternating chirali-
ties and hopping strength. The air channels between layers
are cylindrical tubes with diameters d1 and d2. We obtained
the simulated results using finite-element methods (COMSOL

MULTIPHYSICS), with a density of air of 1.2 kg/m3 and a
velocity of airborne sound of 343 m/s. When d1 = d2, the
acoustic system is a type-I Dirac sonic crystal. The 3D Dirac
point emerging at the BZ corner is protected by two glide
reflections and C3v symmetry. Each glide reflection involves a
half translation along the rotation axis: Gx = {Mx|(a/2)ẑ} and
Gy = {My|(a/2)ẑ}. The C3v symmetry gives rise to nodal lines
that are doubly degenerate at KH or K ′H ′ of the BZ. The glide
reflections force the nodal lines to cross and form a 3D Dirac
point at H of the BZ. When d1 �= d2, the glide reflection and
mirror symmetries are broken, which lifts the 3D Dirac cone
to a topological complete band gap (5.84 to 6.54 kHz, 11.3%
relative band gap width), as shown in Figs. 1(e) and 1(f). The
lifting of the Dirac cone can contribute to an effective mass
m = 2(tc1 − tc2), where tc1 and tc2 are the hoppings between
layers, corresponding to tubes of diameters d1 and d2. Band
inversion occurs at the H point of the BZ when the effective
mass changes sign. The tight-binding model analysis using
the k · P perturbation method is given in Appendices A 1
and A 3.
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FIG. 2. (a) Simulated pressure field distribution of the topological surface state on the (a) XZ (100) surface with a flat boundary.
(b) Measured real-space propagation of a surface wave excited by a pointlike source. (c) Surface band dispersion on the XZ surface.
(d) Equifrequency contours of the surface state at 5.9, 6.2, and 6.5 kHz. The color bar in (c) and (d) denotes the magnitude of the spatial
Fourier transformation. The black lines and dots denote the simulation results. The dashed black lines denote the boundary of the first BZ.

The fragile topology is based on the fact that the band
topology in fragile topological phases is weaker than that
in stable topological phases captured within K-theory be-
cause the Wannier-obstructed fragile bands can be explicitly
trivialized by the presence of an additional atomic insula-
tor. According to topological quantum chemistry, an isolated
orbital at a high-symmetry point in real space induces a
corresponding combination of bands in the reciprocal space,
which is called the elementary band representation (EBR).
The classification of the crystalline insulator is turned into
the matching between possible EBRs and the bands in the
material. If the bands can be written as a combination of
EBRs, the crystal is an atomic insulator. Otherwise, EBRs
can be decomposed with fractional coefficients for a stable
topological insulator or decomposed with integer positive and
negative coefficients for a fragile topological insulator. It was
shown that the fragile topology has experimental signatures
at the boundary according to the twisted bulk-boundary cor-
respondence. Recently, gapless surface states were found in
fragile topological insulators protected by rotation symme-
try [34], although the fragile phases generally do not exhibit
gapless surface states, in contrast to the stable phases. The
acoustic crystal is a fragile topological insulator, as the lowest
two bands have a missing EBR induced by the Wyckoff posi-
tion (see Appendix A 2 for details). In our work, we discuss
the mechanisms of surface or interface states in an acoustic
fragile insulator. For each kz, the winding of Wannier centers
is nontrivial. As the acoustic crystal is obtain by stacking the

spin-Chern insulator with appropriate interlayer couplings,
the two bands below the band gap can be projected into layer
pseudospin sectors which have nontrivial spin-Chern number
Cs = 1 on each kz plane [17]. If the chirality of the interlayer
hopping is inverted, the spin-Chern number will change sign.
Because the lowest two bands are fragile, the occurrence of
surface or interface states does not rely on the band inversion
mechanism, which is often used to generate interface states in
obstructed atomic insulators. In the next section, we demon-
strate how the surface or interface states arise from the bulk
topology.

III. SURFACE AND INTERFACE STATES

The topological surface states of the acoustic crystal are
shown in Fig. 2. A robust pseudospin wave is generated at
the side surfaces due to the nontrivial spin-Chern number and
nontrivial winding of the Wannier centers. The layer pseu-
dospins up and down for surface states can be defined with
the projection on σy (see Appendix A 2 for details). We obtain
two branches of surface states with pseudospin-momentum
locking: the branch of 〈σy〉 > 0 is counterclockwise trans-
porting (see above) within kx ∈ (0, π/a) in the surface BZ,
and the branch of 〈σy〉 < 0 is clockwise transporting within
kx ∈ (−π/a, 0), which is the time-reversal counterpart of the
branch of 〈σy〉 > 0. When the chirality of interlayer hopping
is inverted, the sign of 〈σy〉 switches, accompanied by the
inversion of pseudospin-polarized sectors. The pressure field
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FIG. 3. (a) Interface formed by inverting the chirality of interlayer hopping. (b) Interface formed by interchanging the interlayer strengths
tc1 and tc2. (c) Interface formed by interchanging the interlayer hopping strengths and inverting the chirality of the interlayer hopping. The red
dashed lines denote the domain wall. Orange up and down arrows represent interlayer hopping strengths |tc1| > |tc2| and |tc1| < |tc2|. Green
arrows represent the chiralities of interlayer hopping. (d)–(f) Simulated interface band dispersion (red solid line) along the high-symmetry line
of the BZ for the interfaces in (a)–(c). The surface band dispersion (blue dashed line) with a hard boundary condition is shown as a reference
in (d). (g)–(i) Three-dimensional view of simulated interface dispersion for the interfaces in (a)–(c). The dispersion of the interface in (d) and
(g) forms a quasi-1D crossing. An interface Dirac cone appears near the H̄ point in (e) and (h) and the K̄ point in (f) and (i).

of the 〈σy〉 > 0 branch is illustrated in Fig. 2(a). The XZ
surface has a flat whole-cell boundary. The cavities near the
boundary have a smaller radius of rb = 3.3 mm to avoid
band crossing between surface states. In the experiment, a
pointlike source is inserted into the middle of the surface.
A microphone (B&K 4138) is inserted into the sample to
obtain the acoustic field signal. A vector network analyzer
(Keysight E5061) is used to extract the amplitude and phase
profiles of the acoustic waves. The spatial fields in Fig. 2(b)
show the propagating acoustic wave measured at 6.2 kHz. The
surface waves propagate along the horizontal direction with-
out broadening, which manifests the collimation effect of the
acoustic wave. The surface band information can be obtained
by Fourier transforming the measured field. The measured
band dispersions on the XZ surface are shown in Fig. 2(c).
There is a pair of surface bands under time-reversal symmetry
in the surface BZ. The equifrequency contours for the XZ
surface are almost flat, as shown in Fig. 2(d), which agrees
with the measured spatial field distribution. Similar surface
states on the Y Z surface with a zigzag boundary are shown in
Appendix B.

In addition to the layer-pseudospin-polarized surface
states, we can realize interface states that are also layer pseu-
dospin polarized. The interface is formed by inverting the
chirality of the interlayer hopping, as shown in Fig. 3(a).
The interface bands form a quasi-1D crossing at each kz as
two pseudospin-polarized interface states cross each other, as
shown in Figs. 3(d) and 3(g). The number of interface states is
doubled compared to the surface states because the difference
of pseudospin-Chern number is doubled between the domains.

To create an interface Dirac cone in the acoustic system,
an interface with band inversion should be introduced (see
Sec. A 3 for details). By exchanging the interlayer hopping
strengths tc1 and tc2 [see Fig. 3(b)], an inversion between the
two lowest bands and two upper bands can occur at H in the
BZ, as shown in Figs. 3(e) and 3(h).

Now we have demonstrated two different mechanisms for
the interface states, with or without band inversion. It would
be very interesting to see how these mechanisms combine.
Figure 3(c) shows the interface formed with inverted chirality
and exchanged interlayer hopping strengths. A surface Dirac
cone is observed at (kx, kz ) = (0.3437, 0) × 2π/a near K̄ , as
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kz = π/a kz = π/a kz = 0

FIG. 4. (a)–(c) Pressure field distribution in the X-shaped cross waveguides. Interfaces are formed by four different domains, where orange
up and down arrows represent interlayer hopping strengths |tc1| > |tc2| and |tc1| < |tc2|. Green arrows represent the chiralities of the interlayer
hopping. The waveguide is periodic in the z direction. The purple star is the location of the monopole acoustic source. The waveguide is
surrounded by absorbent materials. (d)–(f) Corresponding normalized acoustic intensity at the exits of the waveguide.

shown in Figs. 3(f) and 3(i). The crossing of the interface
band at kz = 0 is caused by inversion of the layer pseudospin
sectors. The band inversion does not happen at kz = 0 but at
H in the BZ. The interface Dirac cones are distinguished from
the quasi-1D Dirac dispersion [35]. The dispersion near Dirac
cones is equivalent to a 2D Dirac particle, while the quasi-1D
Dirac dispersion is approximately equal to a 1D Dirac particle
at each kz. Only the quasi-1D Dirac dispersion has separate
pseudospin-polarized sectors.

IV. X-SHAPED WAVEGUIDES

X-shaped waveguides are commonly used to check the
pseudospin-dependent transport properties in classical sys-
tems [7]. X-shaped interfaces in three dimensional are a more
interesting phenomenon because the dispersion or the mech-
anism of the interface states is richer than in 2D conditions.
Based on the three different types of interfaces depicted in
Figs. 3(a)–3(c), we designed X-shaped cross waveguides to
study the partition behavior of interface states. The simulated
pressure field is shown in Figs. 4(a)–4(c) with certain kz.
The incident acoustic wave from interface 1 tends to transmit
through a sharp angle to interface 4 since the interface modes
between interfaces 1 and 4 overlap better. The transmission
to interface 2 is forbidden if interfaces are formed by band
inversion [Fig. 4(b)], which is similar to 2D acoustic topolog-
ical insulators. The intensity of the acoustic wave at the exits
of interface 2 is comparatively low, as shown in Fig. 4(e).
For interfaces formed by inversion of layer pseudospin sec-
tors, the lack of spin conservation results in the pseudospin
flipping in the cross waveguide [9]. The interface states not

only can propagate to interfaces 3 and 4 with the same layer
pseudospin polarization 〈σy〉 but also can transport to interface
2 with pseudospin flipping, as shown in Figs. 4(d) and 4(f).
The result for a specific kz in Fig. 4 can be achieved using
the experimental procedure in two different ways. One can
extract different kz components by Fourier transforming the
field distribution or using a sound source array to stimulate
the specific kz component.

The surface and interface states allow us to design a
surface-interface-surface waveguide. Combining the surface
and interface states, the acoustic wave propagation path
can be tailored in various ways. In Figs. 5(a) and 5(b),
we illustrate equifrequency contour (EFC) analysis for
surface-interface-surface acoustic beam propagation [22]. The
layer-pseudospin-polarized surface or interface states lack
diffraction along the z direction because the EFCs are almost
flat [Fig. 5(a)]. When the interface states are not layer pseu-
dospin polarized [Fig. 5(b)], the acoustic beam is expanded
in the interface region because of the circular EFC in the
Dirac cone dispersion. In Fig. 5(c), the X-shaped waveguide
is composed of two acoustic domains, where the chirality in
one of the domains is inverted. Interface waves and surface
waves are both layer pseudospin polarized. The surface wave
transport is clockwise in the left domain and becomes coun-
terclockwise in the right domain. Here, the transmission to
terminal 2 is forbidden. The acoustic beam is not expanded
across the interface. A dominant ratio of acoustic waves can
be transported to terminal 3, as shown in Fig. 5(d). If the
interface states are not layer pseudospin polarized, we ob-
serve transmission to both terminals 2 and 3, as shown in
Figs. 5(e)–5(h), which means the incident wave is converted
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FIG. 5. (a) and (b) Schematic of equifrequency contour (EFC)
analyses (left panel) for surface-interface-surface acoustic beam
propagation (right panel). The surface, interface, and surface regions
are denoted by circled 1, 2, and 3. The interface states in (a) are
layer pseudospin polarized and have a crossing dispersion, while the
interface in (b) has a Dirac cone dispersion. (c), (e), and (g) Pressure
field distribution of the surface wave in the x-y (top) and x-z (bottom)
cut planes at 6.2 kHz. The X-shaped waveguide is composed of two
different domains with inversion of the (c) pseudospin sectors, (e)
pseudospin sectors and bands, or (g) only the bands. The structure
is constructed by stacking double-diamond elements along z. The
waveguide ends with absorbent materials. The pink star denotes the
position of the source. (d), (f), and (h) Corresponding transmission
from surface 1 to terminal surfaces 2, 3, and 4. Si j are the S parame-
ters of the waveguide.

into two layer-pseudospin sectors. The interface also acts as
a beam expander of the directional surface wave, as shown in
the x-z cut plane in Fig. 5(e). For the X-shaped waveguide
formed by band inversion in Fig. 5(g), the transmission to
terminal 2 is dominant because the pseudospin sectors are
not inverted [Fig. 5(h)]. For a case between Figs. 5(c) and
5(g), in which the waveguide is formed by inversion of both
pseudospins and bands, neither the transmission to terminal 2
nor that to terminal 3 is dominant [Fig. 5(f)]. By combining
the surface and interface states, the acoustic wave propaga-
tion in the band gap can be tailored in more flexible and
diverse ways. Applications such as pseudospin converters and
beam splitters may have potential value in innovative acoustic
devices.

V. CONCLUSIONS

In conclusion, we have experimentally realized an acous-
tic fragile topological insulator, in which topological surface
states in three different surfaces are observed. Topological
interface states are found at the domain walls where inversion
of pseudospin sectors or bands is introduced. The transport be-
havior of surface and interface states in X-shaped waveguide
become much complex than in the 2D case because of the
richer topological properties. The system provides a platform
to investigate applications implementing both surface states
and interface states, such as focusing, sensing, and waveguid-
ing. The breathing kagome lattice can further be utilized to
realize higher-order 3D topological insulators [36–40].
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APPENDIX A: TIGHT-BINDING MODEL
AND SYMMETRY ANALYSES

In this Appendix, we summarize how the interface and
surface states arise from the bulk topology. The surface states
stem from the fragile topology and the polarization of pseu-
dospin sectors for bands below the gap. The interface states
with cone dispersion stem from the band inversion when ex-
changing interlayer hopping strengths tc1 and tc2. These two
different mechanisms allowed us to design various kinds of
waveguides in the main text.

1. Tight-binding model

We introduce a tight-binding model that includes inter-
atomic hopping between intralayer nearest neighbors and
interlayer next-nearest neighbors. The tight-binding Hamilto-
nian in real space is

H =
∑

i

εic
†
i ci + t1

∑
〈i j〉

c†
i c j

+
∑

〈〈i j〉〉,α
[tc1vi j,αc†

i,αc j,α+1 + tc2vi j,αc†
i,αc j,α−1 + H.c.],

(A1)

where c and c† are the annihilation and creation operators on
the sublattice sites and the subscripts (i, j) represent the lattice
sites of each layer. The first term represents the on-site en-
ergy. The second term represents hopping between intralayer
nearest neighbors with strength t1. The last term is the chiral
interlayer hopping between the next-nearest neighbors, where
tc1 and tc2 are the hopping strengths and α represents lay-
ers with odd numbers. vi j,α = [(2/

√
3)(ê1

i j,α × ê2
i j,α )

z
+ 1]/2
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encodes the chirality of the interlayer hopping, where ê1,2
i j,α are

the two nearest-neighbor bond unit vectors traversed between
sites i and j. The Bloch Hamiltonian can be written as

H (k) =
(

H1 H2

H†
2 H1

)
, (A2)

where

H1 = 2t1

⎛
⎝ 0 cos(k · a3) cos(k · a2)

cos(k · a3) 0 cos(k · a1)
cos(k · a2) cos(k · a1) 0

⎞
⎠ (A3)

and

H2 = 2(tc1e
ikza

2 + tc2e− ikza
2 )

×
⎛
⎝ 0 0 cos(k · a′

2)
cos(k · a′

3) 0 0
0 cos(k · a′

1) 0

⎞
⎠. (A4)

ai and a′
i (i = 1, 2, 3) are the nearest and next-nearest hopping

vectors of the kagome lattice, where a1 = (−a/4,
√

3a/4, 0),
a2 = (−a/4,−√

3a/4, 0), a3 = (a/2, 0, 0), a′
1 =

(−3a/4,−√
3a/4, 0), a′

2 = (3a/4,−√
3a/4, 0), and

a′
3 = (0,

√
3a/2, 0). The basis of the Hamiltonian is φeik·r,

which is a Bloch eigenstate φ with a phase factor. The
Hamiltonian can be written in Gell-Mann matrix form as

H (k) = 2t1σ0dk · S

+ cos(kza/2)(tc1 + tc2)(σxd′
k · S + σyd′

k · S′)

+ sin(kza/2)(tc1 − tc2)(σyd′
k · S − σxd′

k · S′), (A5)

where dk = ( cos(k · a1), cos(k · a2), cos(k · a3)), d′
k =

( cos(k · a′
1), cos(k · a′

2), cos(k · a′
3)), S = (λ6, λ4, λ1),

and S′ = (λ7,−λ5, λ2). λi (i = 1, . . . , 8) are the Gell-
Mann matrices acting on the sublattice pseudospins.
σ = (σx, σy, σz, σ0) are the Pauli matrices for layer
pseudospins. When tc1 = tc2, the Hamiltonian reduces to
a Dirac Hamiltonian in the kz = π/a plane, where a fourfold
Dirac point appears at the H point in the BZ.

2. Fragile topology and layer-pseudospin-polarized transport

Here, we present the matrix representation of the rotation
symmetries. The rotational axis is site 1a of the unit cell.

c6 = σ0 ⊗

⎛
⎜⎝

0 0 e−i(kx/4+√
3ky/4)

e−ikx/2 0 0

0 e−i(kx/4+√
3ky/4) 0

⎞
⎟⎠,

(A6)

c3 = σ0 ⊗

⎛
⎜⎝

0 e−i
√

3ky/2 0

0 0 e−i(3kx/4+√
3ky/4)

e−i(3kx/4−√
3ky/4) 0 0

⎞
⎟⎠,

(A7)

c2 = σ0 ⊗

⎛
⎜⎝

ei(kx/2−√
3ky/2) 0 0

0 e−i(kx/2+√
3ky/2) 0

0 0 e−ikx

⎞
⎟⎠. (A8)

FIG. 6. (a) Symmetries of the tight-binding model. The locations
and labels of the maximal Wyckoff positions are in red. t1 is the
nearest-neighboring hopping. (b) Band structures of the tight-binding
model with t1 = −1, tc1 = −0.45, tc2 = −0.2. Little group represen-
tations are labeled for the lower two bands.

We calculate the tight-binding band structure and label the
high-symmetry points in Fig. 6. The corresponding irre-
ducible representations are given in Table I. The topology
of a gapped band structure is characterized by the symmetry
data vector B = ∑

i piEBRi, which is a linear combination of
elementary band representations (EBRs) [19]. A complete list
of the spinless EBRs for p6 with time-reversal symmetry and
without spin-obit coupling is presented in Table II. The lowest
two bands have the missing EBR induced by the Wyckoff
position, which is a characteristic of a fragile topological
insulator. For example, one decomposition of the lowest two
bands is

(A)1a ⊕ (
1E2

2E2
)

1a ⊕ (A)2b 
 (B)3c. (A9)

TABLE I. Character tables for p6 and the relevant little groups.
The first column gives the standard name according to Altmann-
Herzig notation (AH). The second column gives another name at the
high-symmetry points in the Brillouin zone according to the Bilbao
Crystallographic Server (BCS).

PG 6

AH BCS E c6 c3 c2

A �1, A1 1 1 1 1
B �2, A2 1 −1 1 −1
1E1 �6, A6 1 e−i π

3 e−i 2π
3 −1

2E1 �4, A4 1 ei π
3 ei 2π

3 −1
1E2 �5, A5 1 ei 2π

3 ei 4π
3 1

2E2 �3, A3 1 e−i 2π
3 e−i 4π

3 1

PG 3
AH BCS E c3

A K1, H1 1 1
1E K2, H2 1 ei 2π

3

2E K3, H3 1 e−i 2π
3

PG 2
AH BCS E c2

A M1, L1 1 1
B M2, L2 1 −1
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TABLE II. Elementary band representations (EBRs) for p6. The columns denote the EBR as (R)l . R is the irreducible representation of the
orbital that induces the EBR. l denotes the maximal Wyckoff position where the orbital locates. The last row is the decomposition coefficient
pi for each EBR in the acoustic topological insulator, where a, b ∈ Z.

Band representation

(A)1a (B)1a (1E1
2E1)1a (1E2

2E2)1a (A)2b (1E 2E )1a (A)3c (B)3c

A A1 A2 A3A5 A4A6 A1 ⊕ A2 A3A5 ⊕ A4A6 A1 ⊕ A3A5 A2 ⊕ A4A6

� �1 �2 �3�5 �4�6 �1 ⊕ �2 �3�5 ⊕ �4�6 �1 ⊕ �3�5 �2 ⊕ �4�6

H H1 H1 H2H3 H2H3 H2H3 2H1 ⊕ H2H3 H1 ⊕ H2H3 H1 ⊕ H2H3

K K1 K1 K2K3 K2K3 K2K3 2K1 ⊕ K2K3 K1 ⊕ K2K3 K1 ⊕ K2K3

L L1 L2 2L1 2L2 L1 ⊕ L2 2L1 ⊕ 2L2 L1 ⊕ 2L2 2L1 ⊕ L2

M M1 M2 2M1 2M2 M1 ⊕ M2 2M1 ⊕ 2M2 M1 ⊕ 2M2 2M1 ⊕ M2

pi a a − 1 a − 1 a b b − 1 2 − a − b 1 − a − b

The decomposition is always a difference of EBRs, which
indicates the fragile topology of the acoustic crystal.

The evolution of the Wannier charge centers (WCCs) in the
lowest two bands is calculated with the simulated eigenstates,
as shown in Fig. 7. The evolution of WCCs below the band
gap shows a nontrivial winding number in the kz = 0 and
kz = π/a planes. For each kz, the nontrivial winding of WCCs
gives rise to a pseudospin-polarized surface wave transport.
The calculation of WCCs is also performed in planes parallel
to the kz axis. The winding of WCCs in planes k1,2 = 0 and
k1,2 = π/a is trivial.

Similar to the spin-Chern insulator, the bands below the
gap can be projected into layer pseudospin sectors with an
open spin gap. The projected Hamiltonian Hs in the layer
pseudospin space is

Hs =
(〈φ1|τy|φ1〉 〈φ1|τy|φ2〉

〈φ2|τy|φ1〉 〈φ2|τy|φ2〉
)

, (A10)

where φ1 and φ2 are the Bloch wave functions of the lower
two bands, τy = σy ⊗ I3×3. We obtain two pseudospin bands
with gapped eigenvalues χ± and eigenvectors ψ± = (α±, β±).
The lowest two bands can be projected into two spin sectors
as

φ± = α±φ1 + β±φ2. (A11)

FIG. 7. (a) BZ with reciprocal lattice vectors in the k1, k2, and kz

directions. (b) Evolution of the Wannier charge center (WCC) along
the k2 direction for the lowest two bands. The WCC is calculated
using the Wilson loop method in the k1 direction.

Each spin sector has a pseudospin-polarized Chern number in
each kz,

C±(kz ) = 1

2π

∫
BZ

dkxdky±, (A12)

where ± = êz · [∇k × 〈φ±|i∇k|φ±〉] are the Berry curva-
tures. We have a pair of nontrivial pseudospin-polarized Chern
numbers C± = ±1 or a spin-Chern number Cs = (C+ −
C−)/2 = 1 for the lowest two bands. When the chirality of
the interlayer hopping is inverted, the pseudospin-polarized
Chern numbers change sign, that is, C± = ∓1 and Cs = −1.

Accordingly, the pseudospins up and down for surface
states can be defined by the projection on σy. The pseu-
dospin polarization for the surface state is defined as 〈σy〉 =
〈φk|σy|φk〉. We obtain two branches of surface states with
pseudospin-momentum locking in the main text.

3. Interface states with band inversion

The mechanism of interface Dirac cones differs from the
layer-pseudospin-polarized states, as the interface Dirac cones
are achieved through band inversion. Using k · P perturbation
theory, we evaluate the effective model near the H point in the
BZ. The lowest four eigenstates at the H point are

φ1 = 1√
6

(
ei 2π

3 , ei 2π
3 , 1, ei 4π

3 , ei 4π
3 , ei 2π

3
)T

,

φ2 = 1√
6

(
ei 4π

3 , 1, 1, ei 2π
3 , ei 4π

3 , ei 4π
3
)T

,

φ3 = 1√
6

(
ei 5π

3 , ei 5π
3 ,−1, ei 4π

3 , ei 4π
3 , ei 2π

3
)T

,

φ4 = 1√
6

(
ei π

3 ,−1,−1, ei 2π
3 , ei 4π

3 , ei 4π
3
)T

. (A13)

Cavities linked by tc1 are in phase coupled for φ1,2 and out
of phase coupled for φ3,4. φ1,3 and φ2,4 carry orbital angular
momenta −1 and +1 along the z direction, respectively. The
simulated results of eigenstates are shown in Fig. 8, which
is in agreement with the tight-binding model. In the basis of
(φ1, φ2, φ3, φ4), the effective Hamiltonian near the H point up
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FIG. 8. Simulated pressure field profile of eigenstates near the H
point of the BZ. The pressure eigenstates of band i (i ∈ 1, 2, 3, 4)
correspond to the Bloch eigenstates φi in the tight-binding model.

to the linear term is

Heff =

⎛
⎜⎝

t1 + m αk+ −iγ δkz βk+
α∗k− t1 + m β∗k− −iγ δkz

iγ δkz βk+ t1 − m αk+
β∗k− iγ δkz α∗k− t1 − m

⎞
⎟⎠, (A14)

where m = 2(tc1 − tc2) is the effective mass induced by the
breaking of mirror symmetry. Other parameters are k± =
δkx ± iδky, α = (

√
3t1/4)ei4π/3, β = (3t1/4)e−iπ/6, and γ =

tc1 + tc2. The mσz term lifts the degeneracy of the 3D Dirac
point. When the sign of the mass term is reversed m → −m,
the band inversion occurs. A 2D topological domain wall
separating 3D structures with opposite signs for the effective
mass m should host topological surface states exhibiting linear
2D Dirac-like dispersion at the projection of the H point in the
surface BZ [31], which is shown in Fig. 3(c).

APPENDIX B: SURFACE STATES IN THE Y Z
AND TOP XY SURFACES

The Y Z surface has a zigzag whole-cell boundary, as
shown in Fig. 9(a). The spatial fields in Fig. 9(b) show the
propagating acoustic wave measured at 6.2 kHz. The surface
wave distribution at the Y Z surface is similar to that at the XZ
surface. The measured band dispersions at the Y Z surface are
shown in Fig. 9(c). Two branches of surface band dispersion
cross at �̄Z̄ in the surface BZ for higher frequencies, forming
a tiny gap because of the lack of glide reflection symme-
tries. The equifrequency contours on the Y Z surface also
demonstrate crossing of surface bands at higher frequencies,
as shown in Fig. 9(d).

The top and bottom surfaces of the weak topological in-
sulator are usually trivial, and no surface states are found.
However, the weakly coupled surface layer in the acoustic
crystal can be utilized to achieve a surface Dirac cone in

FIG. 9. (a) Pressure field distribution of the topological surface
state on the (a) Y Z (100) surface with a flat boundary. (b) Measured
real-space propagation of a surface wave excited by a pointlike
source. (c) Surface band dispersion on the Y Z surface. (d) Equifre-
quency contours of the surface state at 5.9, 6.2, and 6.5 kHz. The
color bar in (c) and (d) denotes the magnitude of the spatial Fourier
transformation. The solid black lines and dots denote the simulation
results. The dashed black lines denote the boundary of the first BZ.

the band gap. The top and bottom surfaces have a half-cell
boundary, as shown in Fig. 10(a), where the weakly (strongly)
coupled layer is at the top (bottom). The cut planes of the
half-cell boundaries for the top and bottom surfaces are mirror
planes in the structure. The spatial field at the top surface
shows a ring pattern and transport in all directions, as shown
in Fig. 10(b). In contrast to the side surfaces, the XY surface
supports a surface Dirac cone protected by the rotational sym-
metry and a nontrivial Zak phase, as shown in Fig. 10(c).
The weakly coupled layer at the top surface acts as a 2D
hexagonal acoustic semimetal. If the surface layer has strong
coupling to the bulk, then the surface states will vanish as
the strongly coupled layers become similar to a bilayer spin-
Chern insulator [9]. The half-cell boundary can be viewed as a
mirror plane, which is equivalent to an interface with a weakly
coupled whole-cell layer.

FIG. 10. (a) Bloch field distributions for surface states of the top
surface with a half-cell boundary. The pillarlike structure contains
10 unit cells stacked along the z direction. The structure has periodic
boundary conditions in directions perpendicular to the z direction,
while the top and bottom are hard boundaries. (b) Measured real-
space propagation of a surface wave excited by a pointlike source.
(c) Measured surface band dispersion on the top surface (color map)
in contrast to the simulation. The color bar in (c) denotes the magni-
tude of the spatial Fourier transformation.
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