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With the recent discovery of the correspondence between low-dimensional dynamical systems and high-
dimensional topological insulators through the pumping process, many efforts have been made to generalize
these correspondences to other topological phases. Yet, there is ongoing ambiguity about the correspondence
of higher-order topological semimetals. Here, we propose a correspondence between a two-dimensional (2D)
dynamic higher-order system and three-dimensional (3D) higher-order Dirac semimetals (HODSMs) through
synthetic space consisting of a 2D lattice and a one-dimensional parameter dimension. We explore the evolution
of the 2D higher-order topological insulator in a hexagonal acoustic crystal and find all the hallmarks of 3D
HODSM in it, including Dirac points, surface states, and higher-order hinge states. By measuring the local
density of states and acoustic pressure fields evolved in the 2D acoustic samples, we show that the system
undergoes band gap-closing points, mapping to Dirac points in 3D synthetic space. The corner states evolving
in nontrivial topological phase constitute hinge states connecting synthetic Dirac points. Our research deepens
the understanding of the connections between different topological phases and may inspire further exploration
of other topological effects in high-dimensional systems.
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Introduction. Higher-order topological insulators (HOTIs),
as a new topological phase of matter that goes beyond the
conventional bulk-boundary correspondence, have attracted
a lot of attention in the last few years [1–5]. In general, an
hth-order topological insulator in a d-dimensional system is
characterized by (d − h)D boundary states with h > 2, differ-
ent from conventional topological insulators with only (d −
1)D boundary states. In addition to topological insulators, a
higher-order topology can extend to topological semimetals
with nontrivial higher-order topological states [6–10]. Com-
pared with conventional topological semimetals that only host
two-dimensional (2D) surface Fermi arcs, higher-order topo-
logical semimetals also host intriguing one-dimensional (1D)
hinge states connecting projected Dirac points or Weyl points.
Higher-order Dirac semimetals (HODSMs) can transition to
higher-order nodal ring semimetals (HONRSMs) by breaking
C3 symmetry, and higher-order Weyl semimetals (HOWSMs)
by breaking C3 and mirror symmetries [11]. Thus, HODSMs
have been an important bridge for investigating higher-order
topological semimetals. Higher-order topological semimetals
have been extensively studied in phononic crystals [12–19]
and photonic crystals [20,21]. Classical wave systems have
become an important platform for testing and implementing

*Contact author: hliu@nankai.edu.cn
†Contact author: hcheng@nankai.edu.cn
‡Contact author: schen@nankai.edu.cn

topological physics due to the high flexibility and controlla-
bility of wave trapping and manipulation [22–27].

In addition to static systems, similar topological states
also exist in dynamical systems, such as Floquet systems
[28] and topological pumpings [29]. In Floquet systems, peri-
odic modulation can create an effective magnetic field, which
breaks time-reversal symmetry and induces topologically pro-
tected one-way edge states [30,31]. Floquet systems provide
a method to break time-reversal symmetry without applying
external fields and connect the Chern topological phase with
dynamically driven systems. By manipulating an adiabatic cy-
cle of particles or topological states, 1D topological pumping
is equivalent to the 2D integer quantum Hall effect [32], and
2D topological pumping corresponds to the four-dimensional
integer quantum Hall effect characterized by the second Chern
number [33]. Since a bridge has been established between
low-dimensional insulators and high-dimensional quantum
Hall effects, topological pumping is regarded as a tool for
probing high-dimensional physics. It has been realized in
various systems, including photonic waveguides, cold atoms,
and acoustic systems [34–36]. More recently, the higher-order
counterpart of topological pumping has been proposed and
observed in photonic waveguide arrays, manifesting corner
state transfer in the bulk band gap [37]. It is worth noting
that this higher-order topological pumping corresponds to
a three-dimensional (3D) second-order topological insulator
with chiral hinge states, where the bulk band gap remains
open during the pumping process. In addition to the high-
order topological pumping described by the Chern number,
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FIG. 1. Tight-binding model of the dynamic HOTI. (a) Schematic of the 2D hexagonal lattice model with modulated intracell coupling t1

(green tubes) and intercell coupling t2 (blue tubes). (b) Intra- and intercell coupling coefficients as functions of parameter φ. (c) Bulk band
structures of the H (kx, ky, φ) along the high-symmetry lines. (d) Topological invariant χ (6) = ([M (2)

1 ], [K (3)
1 ]) along φ. Yellow and blue colors

denote normal insulator (NI) and HOTI phases. (e) “Zero-energy” corner states of the 2D hexagonal model in the nontrivial phase (right panel)
constitute the higher-order hinge states in the synthetic 3D space (left panel). (f) Brillouin zones of HONRSM, HOWSM, and 3D HOTI. Purple
spheres: Dirac points. Blue rings: nodal rings. Red and green spheres: pairs of Weyl points.

researchers proposed a high-order topological pumping re-
lated to the boundary topology described by the boundary
Chern number [38]. So far, the previous works mainly fo-
cus on the correspondence between dynamic low-dimensional
topological insulators and high-dimensional topological insu-
lators [34–39]. In these studies, the band gap remains open
throughout the evolution process. A natural question arises:
How does the relationship change if the band gap closes? Al-
though the higher-order corner state transition in a closed band
gap has been proposed as a HOWSM [40], the subtle con-
nection between the dynamical evolution of low-dimensional
HOTIs and high-dimensional higher-order semimetals has not
been fully revealed and requires further investigation.

In this Letter, we proposed a correspondence between
the evolution of 2D HOTI and 3D HODSM through syn-
thetic dimensions. We built a 2D hexagonal acoustic crystal
with parameter-modulated coupling and observed its evolu-
tion, which corresponds to a HODSM in 3D synthetic space
(2D lattice and 1D parameter dimension). The 2D hexagonal
acoustic crystal with given parameters along the parameter
space is the 2D slices of the 3D HODSM, which can be classi-
fied into trivial and nontrivial higher-order topological phases

described by the topological invariant χ (6) = ([M (2)
1 ], [K (3)

1 ]).
The 2D system periodically undergoes the closing and re-
opening of the band gap as the parameters evolve, where
the gap-closing points are fourfold linear degeneracies cor-
responding to the Dirac points. The corner states of the
2D hexagonal acoustic crystal with a nontrivial higher-order
topological phase along the parameter space constitute the
higher-order hinge states of the 3D HODSM. We experi-
mentally measured the local density of states (LDOS) of
the acoustic crystals along the parameter dimension, which
clearly manifests the existence of the higher-order hinge states
connecting the projected Dirac points. This research broadens
the possibilities for controlling sound waves by presenting
an exceedingly simple method for producing HODSMs in
synthetic space.

Model and methods. We start from a 2D hexagonal tight-
binding model with parameter-modulated intra- and intercell
couplings, as shown in Fig. 1(a). For any fixed value of the pa-
rameter, the hexagonal model forms a 2D Kekulé lattice array
with six atoms per unit cell, denoted by orange spheres. The
intra- and intercell couplings, represented by blue and green
tubes, are modulated as functions of t1(φ) = t0 + δ cos(φ) and
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t2(φ) = t0 − δ cos(φ), respectively, over a period, where t0 =
−2δ = 1, as shown in Fig. 1(b). The tight-binding Hamilto-
nian of a unit cell with parameter-modulated coupling terms
can be described as

H (kx, ky, φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 h12 0 h14 0 h16

h∗
12 0 h23 0 h25 0
0 h∗

23 0 h34 0 h36

h∗
14 0 h∗

34 0 h45 0
0 h∗

25 0 h∗
45 0 h56

h∗
16 0 h∗

36 0 h∗
56 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where h12 = h23 = h34 = h45 = h56 = h16 = t1(φ), h14 =
t2(φ)ei( kx

2 +
√

3ky
2 ), h25 = t2(φ)ei(− kx

2 +
√

3ky
2 ), h36 = t2(φ)e−ikx , and

the lattice constant is set to 1 for simplicity. When the lattice
plane (x and y dimension) together with the parameter axis
are considered as a 3D synthetic space, one can find a pair
of fourfold linear degenerate points located at (0, 0,±0.5π ).
The fourfold linear degenerate points created by band
inversion are located at the critical points where the intra-
and intercell coupling strengths are equal. Near each fourfold
degeneracy, there are two doubly degenerate states, dipolar
states px/py represented by blue lines and quadrupolar
states dxy/dx2−y2 represented by red lines, as plotted in
Fig. 1(c). The doubly degenerate states can be hybridized to
p± = px ± ipy and d± = dxy ± idx2−y2 states with pseudospin
up and pseudospin down. Based on k ··· p perturbation theory,
the effective Hamiltonian near the degenerate points in the
basis (px + ipy, dxy + idx2−y2 , px − ipy, dxy − idx2−y2 )T can
be obtained in block-diagonal form as

Heff(kx, ky, φ) =
(

h(kx, ky, φ) 0
0 h∗(−kx,−ky,−φ)

)
, (2)

where h(kx, ky, φ) = ( 2δ cos(φ) A(kx − iky )
A∗(kx + iky ) −2δ cos(φ)) and A = (−i +√

3)[t0 − δ cos(φ)]/4. The tight-binding Hamiltonian analysis
is available in Supplemental Material Sec. I [41]. The effective
Hamiltonian has a form similar to the minimal 4 × 4 Hamil-
tonian of a Dirac semimetal [42], which indicates that the
parameter-modulated hexagonal model in 3D synthetic space
is equivalent to a Dirac semimetal. The pair of fourfold linear
degenerate points on the planes φ = ±0.5π are actually Dirac
points with a nontrivial topological charge of Z2 = 1. The
details for topological charge can be found in Supplemental
Material Sec. II [41].

For different slice of φ, the higher-order topological
properties of the parameter-modulated 2D hexagonal model
with chiral and C6v symmetries can be characterized by
the topological invariant χ (6) = ([M (2)

1 ], [K (3)
1 ]) and the sec-

ondary topological index Q(6)
corner = e

4 [M (2)
1 ] + e

6 [K (3)
1 ] mod e

[43,44]. [M (2)
1 ] = #M (2)

1 − #�2
1 and [K(3)

1 ] = #K (3)
1 − #�3

1 are
C2 and C3 topological invariants, respectively. Here, #�

(n)
1

is the number of states below the gap with Cn-rotational
eigenstates +1 at the � point of the Brillouin zone. Since
the C3 symmetry commutes with the chiral symmetry, there
is [K (3)

1 ] = 0 for all values of φ. In contrast, C2 symmetry
and chiral symmetry are not commutative, and the topological
invariant [M (2)

1 ] is not always zero. The topological invari-
ant [M (2)

1 ] = −2 indicates a nontrivial higher-order topology
in the range of φ ∈ (−0.5π, 0.5π ), while the topological

invariant [M (2)
1 ] = 0 indicates a trivial one, as shown in

Fig. 1(d). There are topological phase transitions between
the topologically trivial and nontrivial phase at φ = ±0.5π ,
mapping to the Dirac points with closed band gaps. Wan-
nier centers are located at the center of the unit cell in the
higher-order topologically trivial phase, but at the boundaries
in the nontrivial phase, as shown in the inset of Fig. 1(d).
The existence of topological corner states depends not only
on the global topological properties of the bulk but also on
the shapes of the finite-size models. The details are presented
in Supplemental Material Sec. III [41]. We use a finite-size
hexagonal model of side length 5a, featuring six obtuse-
angled corners with topological index N = 1, to investigate
the higher-order topological properties. The chiral-symmetry-
protected “zero-energy” corner states with Q(6)

corner = e
2 of the

finite-size hexagonal model appear in the topologically non-
trivial ranges, while they disappear in the trivial ones, as
depicted in the right panel of Fig. 1(e). From the perspec-
tive of 3D synthetic space, the “zero-energy” corner states in
the topologically nontrivial range constitute the higher-order
hinge states of the HODSM (blue lines), connecting a pair of
projected Dirac points (purple spheres), as shown in the left
panel of Fig. 1(e).

As a central gapless topological phase, the HODSM in 3D
synthetic space can transition to other higher-order topologi-
cal phases, such as HONRSM, HOWSM, and 3D HOTI, by
breaking the symmetry or precisely adjusting the coupling
strength, as shown in Fig. 1(f). When reducing the C6v sym-
metry to C2v symmetry by adding an on-site potential in some
atoms, the Dirac point denoted by the purple sphere can be
split into a nodal ring (blue ring). When further introducing
a synthetic gauge flux by adding complex coupling into the
intracell coupling, the nodal ring degeneracy can be opened
as a pair of Weyl points with topological charge C = 1 and
C = −1 denoted by green and red spheres, respectively. When
the intra- and intercell couplings are precisely adjusted to
t1(φ) < t2(φ), the HODSM transitions into a 3D HOTI. The
details are provided in Supplemental Material Sec. IV [41].
Since HODSM is an ancestor model for the other higher-order
phases, we focus on its acoustic realization and observation.

In accordance with the above scenario, we employ a hexag-
onal acoustic crystal to implement the 2D dynamic system.
The hexagonal unit cell with a lattice constant a = 66.9 mm
is illustrated in Fig. 2(a), which contains six acoustic res-
onators connected by parameter-modulated intra- and intercell
cylinder tubes. Each resonator, as an artificial atom, has a
radius and height of r0 = 6.8 mm and H = 20.4 mm, re-
spectively, denoted by orange cylinders. The green and blue
tubes, connecting the resonators at heights H/4 and 3H/4,
provide the intra- and intercell couplings, respectively. The
strengths of the intracell and intercell couplings are controlled
by the radius of tubes r1(φ) = r0 − δ cos(φ) and r2(φ) =
r0 + δ cos(φ), respectively, where r0 = 2.975 mm and δ =
1.275 mm. The simulated bulk band structures along the
high-symmetry lines are shown in Fig. 2(b), where a Dirac
point with a fourfold linear band crossing can be found in
the synthetic space. There are a pair of twofold degener-
ate bands along the �A direction due to the 2D irreducible
representation of C3v symmetry. A Dirac point formed by
the two twofold degenerate bands crossing at (0, 0, 0.5π )
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FIG. 2. Acoustic implementation of the dynamic 2D HOTI.
(a) Unit cell of the parameter-modulated acoustic crystal. (b) Bulk
band structures of the hexagonal acoustic crystal along the high-
symmetry lines. (c) Projected band dispersions of a finite hexagonal
acoustic crystal. (d) Acoustic pressure fields for the topological cor-
ner states, edge states, trivial corner states, and bulk states of the
parameter-modulated HOTI at φ = 0.

is denoted by a purple sphere. Then, we construct a finite
hexagonal structure with side length L = 5a and calculate
the projected band dispersions along the parameter φ, as
shown in Fig. 2(c). The topological corner states, arising
from the higher-order nontrivial topological phase in the range
of φ ∈ (−0.5π, 0.5π ), are represented by blue dots. Along
the parameter φ, topological corner states appear and dis-
appear with the gap closure and reopening. In addition to
the “zero-energy” topological corner states, there are two
pairs of nonhybridized homogeneous trivial corner states and
edge states distributed symmetrically above and below the
frequency of the topological corner states. Due to topologi-
cal protection, the eigenfrequencies of the topological corner
states are not affected by small disorder in the hexagonal
acoustic crystal, while the trivial ones lack such robustness.
When disorder is introduced in the bulk and edge cavities, the
topological corner states at 8485 Hz are almost unaffected by
small disorder, but the trivial corner states are more suscepti-
ble to disorder, as discussed in Supplemental Material Sec. V
[41]. For a given parameter φ = 0, the acoustic eigenpressure
fields present some typical modes of the parameter-modulated
2D HOTI, including topological corner states, trivial corner
states, edge states, and bulk states, as shown in Fig. 2(d).
There are six topological corner states distributed at six differ-
ent corners due to C6 symmetry. Only one of the corner states
is presented here. The pressure fields clearly distinguish the
topological corner state and trivial corner state. The former
is primarily concentrated in two resonators near one corner,
while the latter is mainly concentrated in three resonators.
The fields of edge and bulk states are primarily located at the
edge and bulk resonators, respectively, and have little spatial
overlap with the corner resonators. If the parameter axis φ is
viewed as a synthetic dimension, the evolution of the 2D finite
structure can be understood through higher-order semimetal
physics. Topological phase transition points at (0, 0,±0.5π )
form a fourfold linear band crossing, i.e., the Dirac points,

in 3D synthetic space. The hinge states, constituted by cor-
ner states in the topologically nontrivial phase range φ ∈
(−0.5π, 0.5π ), connect the Dirac points along the parameter
axis. All the hallmarks of HODSMs, such as Dirac points,
surface states, topological, and trivial hinge states, can be
found in this 2D parameter-modulated system, corresponding
to topological phase transition points, the evolution of edge
states (green dots), topological corner states (blue dots), and
trivial corner states (red dots), respectively.

Observation of the dynamic 2D HOTI corresponding to
a HODSM. To confirm the correspondence between the 2D
dynamic HOTI and 3D HODSM, we observed the evolution
of the parameter-modulated HOTI and mapped it to a 3D
semimetal system in experiments. We fabricated a series of
acoustic hexagonal samples with a side length L = 5a using
3D printing technology, where the parameter φ is discretized
at an interval of 0.1π to mimic the evolution [45–48]. The
parameter-modulated HOTI can approach the ideal contin-
uous evolution when the sample discretization is infinitely
small. Discretization usually does not become infinitesimal
due to experimental limitations, but it is sufficient for mim-
icking the key features of the evolution process. One of the
samples with φ = 0 is shown in Fig. 3(a), where the inset
presents the details of one corner. Small holes are left at the
top and bottom of each resonator for measurement purposes.
These holes are blocked with plugs when not in use to main-
tain the integrity of the resonator. While a balanced armature
speaker was placed at the bottom of one resonator to excite
the sound field, a microphone was placed at the top of the
same resonator to detect the acoustic signal. For each acoustic
sample with different evolved values φ, the LDOS can be
extracted from the local pressure response of each resonator
(the details for LDOS can be found in Supplemental Material
Sec. VI [41]). By measuring the LDOS of several acous-
tic hexagonal samples with different values φ, we obtained
the projected band dispersions of the 2D evolved HOTI, as
shown in Fig. 3(b). Through full-wave simulation, simulated
projected band dispersions can be extracted from the LDOS
using the same technique as the experiments, as plotted in
Fig. 3(c). The measured projected band dispersions match
well with the simulated results. Since the intra- and inter-
cell couplings modulated by cosine functions are symmetric
about φ = 0, the projected band structures are also symmetric
about φ = 0. The results of projected band dispersions reveal
two gap-closing points located at φ = ±0.5π , which distin-
guish the two distinct topological phases: The topologically
trivial one is distributed at |φ| > 0.5π , while the nontrivial
one is distributed at φ ∈ (−0.5π, 0.5π ). In the 2D evolved
acoustic system, the topologically protected corner states exist
in the range of a topologically nontrivial phase at 8485 Hz
and form topological hinge states in the synthetic 3D space.
The corresponding measured 2D acoustic pressure fields at
8485 Hz in different planes φ ∈ [0, 0.5π ], representing slices
of topological hinge states in the synthetic 3D space, are given
in Fig. 3(d). All the corner eigenstates are simultaneously
excited, resulting in a symmetrical distribution of the sound
pressure field at each corner. Since the gap closure points
correspond to the Dirac points that connect the topological
hinge states, the slices of the hinge state near φ = 0.5π mix
with the surface and bulk states. The other slices show that
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FIG. 3. Observation of the parameter-modulated 2D HOTI corresponding to a HODSM. (a) Photograph of the sample with φ = 0. (b),
(c) Experimentally measured projected band dispersions and simulated results by full-wave simulation, respectively. Color maps are results
extracted from the experimental and simulated LDOS. Black dots are theoretical projected band dispersions. (d), (e) Measured and simulated
2D acoustic pressure fields at 8485 Hz show the existence of the topological hinge states and degenerate points, respectively.

topological hinge modes are mainly distributed in the A and
B resonators along the parameter axis φ. The measured slices
of the topological hinge modes are in good agreement with the
simulated results, as displayed in Fig. 3(e). Experimental and
theoretical evidence clearly shows that the evolution of the 2D
HOTI corresponds to a 3D HODSM in synthetic space.

The correspondence between the evolution of low-
dimensional systems and high-dimensional systems not only
offers a unique perspective for the study of topological
semimetals, but also provides a method for investigating
elusive high-dimensional topological physics. In higher di-
mensions, topological systems will exhibit more exotic and
rich topological properties, such as a 3D Chern insulator
with torus loops and links characterized by the vector Chern
number [49], a four- and six-dimensional quantum Hall ef-
fect characterized by the second and third Chern number
[50,51], and a five-dimensional Weyl semimetal with a Yang
monopole and linked Weyl surfaces [52,53]. Due to the lim-
itations of real-space dimensions, it is difficult to directly
realize the high-dimensional topological phenomena beyond
three dimensions but can be investigated in low-dimensional
dynamical systems. The four- and six-dimensional quantum
Hall effects are equivalent to 2D and 3D pumping in low-
dimensional systems [34,35,51], respectively. By combining
space and time dimensions, researchers recently proposed
a new topological phase beyond the Floquet paradigm in
(D + 1)-dimensional space-time crystals [54] and success-
fully simulated the Fermi-arc surface state of the space-time

Weyl semimetal in (3 + 1)-dimensional circuits [55]. Fu-
ture research can explore more novel physical properties and
applications of high-dimensional topological systems via low-
dimensional dynamical systems.

Conclusions. In summary, we have established a bridge
between 2D HOTI and 3D HODSM through synthetic di-
mensions. We demonstrated that a phononic crystal, designed
as a parameter-modulated hexagonal lattice, exhibits all
the signatures of the 3D HODSM, including Dirac points,
surface states, and hinge states. We observed that the corner
states, the hallmark of HOTI, exist in the topologically non-
trivial phase range between two gap-closing points along the
parameter axis, which map to the higher-order hinge states
connecting Dirac points in a HODSM. This approach can be
extended to higher dimensions to explore more topological
phenomena, and generalized to other physical systems, such
as mechanical systems, photonic crystals, and electric circuits.
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