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1. Band folding mechanisms 

We introduce band folding mechanisms in a 3 3  supercell. Fig. S1a shows the 

unit cell (blue) and supercell (red) of the Weyl crystal. Fig. S1b shows the 

corresponding Brillouin zone (BZ) BZ1 (blue) and BZ2 (red). The bulk dispersion 

follows the mapping relations1, which is shown in Fig. S1c that 

  0 0 0 1 2| |BZ BZK K      , (or  0 0 0 0 0 0 1 2| |BZ BZA K H K H A      )   (1) 

  0 0 0 0 1 2| |BZ BZK K K K K K     .          (2) 

By removing the pillar in the middle of the supercell, the supercell is reduced to the 

unit cell of Dirac crystal. The new unit cell has less rotational axis, thus the 

degeneracy along K  direction is lifted due to symmetry breaking. 

2. Accidental degeneracy by structural design 

Generally, the two-fold degenerate states at A  are dipole or quadrupole modes, 

whose eigenfrequencies depend on the radius of pillars 0r . Accidental degeneracy is 

formed at the critical point of 0 0.2223r a  with (0,0,0.47 / )k h  as shown in 

Fig. S2a. The pressure field distributions of the dipole and quadrupole modes are 

shown in Figs. S2b and S2c.  

3. Tight-binding calculations 

We consider a 6 6  Hamiltonian that describes the site-site hopping, as there are six 

“atoms” in a unit cell. We introduce a tight-binding model that includes inter-atomic 

hopping with nearest neighbours and next-nearest neighbours 
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where c  and †c  are the annihilation and creation operators on the sublattice sites, 
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the subscripts ( , )i j  represent the lattice sites, and k  represents the number of 

layers. 1t  represents the nearest-neighbour (NN) intralayer hopping, at  and bt  

represent the interlayer hopping for sublattice A and B. The last term represents the 

chiral interlayer hopping with strength ct , where , , ,ˆ ˆ(2 / 3)( ) 1 / 2ij k i k j k zv     e e . 

When a bt t , Xiao et al. discovered that Weyl point can exist in high symmetry KH 

and K H   lines of the BZ1. We note that the Weyl degeneracy will be lifted when the 

NN intralayer hopping are not all equalled. To obtain a fourfold 3D Dirac point, here 

we introduce the band folding mechanism by using unequalled 

next-nearest-neighbour (NNN) intralayer hopping. 2t  represents the NNN intralayer 

hopping within the unit cell. The NNN intralayer hopping between the unit cells are 

insignificant so we neglect them in later analyses. By solving the tight-binding model, 

we obtain two two-fold degeneracy at A  where the Hamiltonian is 

0 2 2 22cos( ) a
z

b
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 
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in the basis 1 1 2 2( , , , )TA S A S  in which 1 ( 1,0,0,0,1,0) / 2TA   , 

1 ( 1,0, 2,0, 1,0) / 6TS    , 2 (0, 1,0,0,0,1) / 2TA   , and 

2 (0, 1,0, 2,0, 1) / 6TS    . A  and S  denote the asymmetric and symmetric 

modes, respectively, and 1 and 2 denote the A and B sublattice modes, respectively. 

The band dispersion indicates that the 3D Dirac points can be type II when 0a bt t  , 

or type III (critically tilted) when 0a bt t  . Each Dirac point can transit towards a pair 

of Weyl points in A  by introducing chiral hopping. The details are demonstrated in 

the main text. 

We calculate the band dispersion along A  through tight-binding model, as 
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shown in Fig. S3. The hopping terms are 1 1t   , 2 0.1t   , 0.6at   , 0.25bt   , 

0ct   for Dirac sonic crystal (Fig. S3a) and 0.15ct    for Weyl sonic crystal (Fig. 

S3b). The 1 1A iS  and 2 2A iS  bands form crossing in the tight-binding model 

instead of hybridizing in full-wave simulation. We also calculated the reduced zk  

planes at band crossing points in Figs. S3c-S3f. The band crossing is linear in all 

directions only between the 1 1A iS  ( 1 1A iS ) and 2 2A iS  ( 2 2A iS ). The other 

crossings are not Weyl points, as they are not linear in directions perpendicular to zk . 

Based on the tight-binding model, we calculated the topological charge of Dirac 

point and Weyl points through the evolution of the Berry phase over a sphere 

enclosing the crossing point2, as a function of polar angle θ in Fig. S4. The gapless 

spectra indicate a nontrivial monopole charge of 2 1Z   for Dirac point, and Chern 

number +1 or -1 for WP1 or WP2. In contrast, the topological charge around the 

crossing between 1 1A iS  and 2 2A iS  in Weyl crystal is trivial, indicating that the 

crossing point is not Weyl point. 

4. Eigenstates along rotational axis 

The eigenstates along A  in Dirac sonic crystal are doubly degenerated. When the 

chiral hopping is introduced in the sonic crystal, the degenerated states are lifted into 

separate states of different angular momentums. The pressure fields at 0.1 /zk h  

and 0.4 /zk h  are shown in Fig. S5 and Supplemental movie 1. For 0.1 /zk h  

between the   point and WP1, the eigenstates from the second band to the fifth band 

are 1 1A iS , 1 1A iS , 2 2A iS  and 2 2A iS , which form the basis in our theory 

model. For 0.4 /zk h  between WP1 and WP2, band inversion takes place after 
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zk  moves across WP1. 1 1A iS  moves to the higher band and 2 2A iS  moves to 

the lower band. 2 2A iS  is further hybridized with 1 1A iS  forming d-orbital-like 

1 12 2( )   d i SAA S  and p-orbital-like 1 12 2( )   p i SAA S  states, therefore 

the 1 1A iS  and 2 2A iS  bands do not form crossing in band dispersions as shown 

in Fig. 1k.  

5. Vortex in surface states and interface states 

The field distribution of surface states at , ) (0.3 / , )( 0x zk ak   is shown in Fig. S6, 

where vortex features appear in the waveguide area. Here the time-reversal symmetry 

at 0zk   has eliminated the out-of-plane Poynting vector. The pressure amplitude 

vanishes at the vortex centre. The Poynting vector near the vortex centre clearly 

shows the vortex and its chirality. For surface states with zigzag boundary, a vortex 

emerges at the centre of each unit cell near the boundary, as shown in Figs. S6a and 

S6c for Dirac and Weyl sonic crystal. For zigzag interface formed though pseudospin 

inversion, the unit cell contains two vortices of opposite chiralities, as shown in Figs. 

S6b and S6d for Dirac and Weyl sonic crystal. As a feature of surface states for both 

Dirac and Weyl sonic crystal, the vortex chirality is dependent on the propagating 

direction of the surface states. This feature can be used to selectively stimulate surface 

wave propagation towards different directions. 

6. Surface states with flat boundary 

The surface band dispersion of Dirac sonic crystal with flat boundary is shown in Fig. 

S7. The 3D band structure on surface XZ is shown in Fig. S7a. The band structure 

along high symmetry line of surface BZ is shown in Fig. S7b, where eigenfrequencies 
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around X, M and Z points of the surface BZ are much lower than the zigzag boundary 

case. The surface bands form a closed pocket at 12.0 kHz and 12.4 kHz as shown in 

Fig. S7c. The pocket expands and forms accidental linear crossing at 12.76 kHz. The 

crossing is further gapped by the bulk bands emerging around the   point of the 

surface BZ. The surface band encloses one of the bulk bands at higher frequencies 

including the Dirac frequency. At Dirac frequency of 13.67 kHz, the surface states 

connect different Dirac points instead of self-connecting.  

In the Weyl sonic crystal with flat boundary, the surface states only appear around 

the Z  line of the surface BZ, while the surface states can appear in various area in 

the surface BZ, as shown in Figs. S8a and S8b. The band dispersion at 0.5 /zk h  

between the paired Weyl points are shown in Figs. S8c and S8d. Compared with 

surface bands at flat boundary, the trajectory of surface bands at zigzag boundary 

crosses the XM line ( / xk a ) before disappearing in the projection of bulk bands. 

Equifrequency contours of the surface states with flat boundary are shown in Fig S9, 

in which the surface states only exist between the two Weyl frequencies. The flat hard 

boundary for Weyl sonic crystal is similar to the interface with inversed chirality, 

because the flat boundary can be viewed as a mirror plane which reflects the chirality 

into the opposite direction.  

7. Surface states with open boundary 

The Dirac sonic crystal cannot support Fermi arcs at the interface with air, while the 

Weyl sonic crystal can support leaky Fermi arcs within the range of WP1 WP2| |zk k k   

at zigzag interface. The simulation results are shown in Fig. S10. The Fermi arcs are 

leaky inside the acoustic cone of the airborne sound 0 / (2 )kf c  . 



7 
 

8. Interface dependent states of Weyl sonic crystal 

Fig. S11 shows the interface states when the interface is created by only pseudospin 

(Fig. S11a) or chirality inversion (Fig. S11b). The pseudospin-polarized states at 

WP1f  emerge in Fig. S11c but not in Fig. S11d. For chirality inversion, the gapless 

one-way interface states appear in Fig. S11f but not in Fig. S11e at 13.67 kHz 

between the Weyl frequencies. 
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Fig. S1 a Schematic of the original unit cell (blue) and supercell (red) of Weyl 

acoustic crystal, and the unit cell of 3D Dirac crystal. b The Brillouin zone of unit cell 

(blue) folded into the Brillouin zone of supercell (red). c The band dispersion 

corresponding to the unit cell and supercell of Weyl crystal, and the unit cell of Dirac 

crystal. 

 

Fig. S2 a The relation between the eigenfrequency of dipole/quadrupole modes and 

0 /r a  at (0,0,0.47 / )k h . b,c Pressure field distribution of b dipole and c 

quadrupole mode.  
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Fig. S3 Tight-binding calculation of band dispersion. a Dispersion for Dirac and b 

Weyl sonic crystals along A . c-f Dispersion for Weyl sonic crystals at c 0zk  , d 

0.297 / h , e 0.5 / h  and f 0.703 / h , where the bands cross at  ( A ). 

 

Fig. S4 Berry phase over a sphere enclosing the crossing point, as a function of polar 

angle θ. a Berry phase of the two lower bands around Dirac point (0, 0, 0.5π/h). b,c 

Berry phase of the lower band around b WP1 and c WP2. d Berry phase of the lower 

band around the crossing between 1 1A iS  and 2 2A iS  in Weyl crystal. The radius 

of the sphere is 0.05π/h.  
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Fig. S5 Band inversion after zk  crosses WP1. 1 1A iS  moves to the higher band 

when 2 2A iS  moves to the lower band and hybridizes with 1 1A iS . 

See Supplemental Movie 1 

 

Fig. S6 Pressure amplitude distribution (colour) and in-plane time-averaged Poynting 

vectors (black arrows) for a,b Dirac and c,d Weyl sonic crystal with a,c zigzag hard 

boundary and b,d zigzag interface. The surface states are traveling rightwards with 

wave vector , ) (0.3 / , )( 0x zk ak  . 
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Fig. S7 Surface bands of the 3D Dirac sonic crystal with flat boundary. a 3D surface 

band structure of projected bulk states (blue) and surface states (red). b Surface band 

structure along high symmetry line of surface BZ. Inset shows the schematic of flat 

boundary. c-e Equifrequency contours of surface bands among various frequencies. 

The red lines denote the surface band, and the dashed black lines denote the outline of 

projected bulk bands. 
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Fig. S8 Surface bands of the Weyl sonic crystal. a,b Band dispersion along high 

symmetry line of surface BZ. c,d Band dispersion at 0.5 /zk h . a,c are with flat 

boundary, while b,d are with zigzag boundary. The red lines and blue dashed lines are 

the surface states, in which the blue dashed lines denote the surface states on the 

opposite surface. 

 

Fig. S9 Equifrequency contours of the surface states of flat boundary at frequencies of 

a 12.76 kHz (WP1), b 13.68 kHz, and c 14.06 kHz (WP2).  
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Fig. S10 Surface state dispersion of Weyl sonic crystal with zigzag open boundary for 

a 0zk   and b 0.47 /zk h . The red dashed lines denote the acoustic cone of the 

airborne sound. The surface modes above the acoustic cone are leaky. 

 

Fig. S11 a,b Interface created by inversing only a the pseudospin or b the chirality. 

c,d Equifrequency contours of interface states at 12.76 kHz (WP1), and e,f at 13.68 

kHz between the Weyl frequencies. 

 


