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Supplementary Text 

1. Reflection under loss 

We consider material dissipations by adding imaginary part to the permittivity of the 

dielectrics 𝜀" = 𝜀$ + 𝑖𝜀$$ . It is found the winding of the reflection phases is robust 

against loss (Fig. S1). On the other hand, the presence of loss causes non-uniform 

reflection amplitude at different azimuth angle of incidence, and eigen polarization 



states become elliptical, as shown in figure. S5. Despite this, the long and short axis of 

the elliptical polarization states represent the same π phase according to the azimuthal 

angle.  

 

Fig. S1. Numerically simulated eigen-polarizations’ reflection phase, reflection 

amplitude around the Weyl point under material loss. The loss is added to the hosting 

dielectrics of the metamaterial as the imaginary part of the relative permittivity𝜀" =

𝜀$ + 𝑖𝜀$$ where 𝜀$$ = 0.1. 

 

2. Derivation of equation (1)  

We start by deriving the expression of bulk eigen-fields of the metamaterial based on 

effective medium theorem. The Fermi arcs’ eigen-fields can be decomposed into the 

bulk eigen-fields at momenta near the location of ideal Weyl points. For simplicity, we 

do not consider nonlocality in the metamaterial. Nonetheless, we found the distribution 

of reflection phase and the configuration of the spiraling fermi arcs can be well 

explained by the eigen-fields derived without considering the nonlocal effects. Maxwell 

equations, in Heaviside units, of the metamaterial can be written as: 

 

In the above equations, the coordinate is defined in Figure. 1 in the main text, e and h 

are electric and magnetic fields, respectively, nx is the effective index along the x 

direction, and the 𝜀+,-,., 𝜇+,-,. and γ are permittivity, permeability and the chirality, 
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describing the effective EM response of the metamaterial. The constraint imposed on 

the constitute relation is:  

𝜀+,-𝜇+,- − 𝛾3 = 0 

which is subject to the longitudinal plasma mode resonance condition at the Weyl 

frequency. 

With these conditions we can derive the ratios between the electromagnetic fields, 

and the effective index at the Weyl point nx as: 
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, and use the constitute relationship of single resonance 

chiral metamaterial in the y directions. 
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We have an identity√𝜀.𝜇. = 9𝜀.𝜇- + 𝜀-𝜇. = 𝑛+at the Weyl frequency 𝜔 = 𝜔A . 

Note that  and in the above expressions represent the non-resonant part of the 

dielectric constants because the resonance frequency of the Weyl metamaterial in the z 

direction is far above the Weyl frequency. 

The non-normalized transverse eigen fields in the y-z directions can be simply 

written as: 

 

|𝜑L⟩ = N0 1 𝑖𝜂-/𝜂. 0 −𝑖𝜂-/𝜂.3 1/𝜂.P 
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The longitudinal field can be written as: |𝜑Q⟩ = [𝜂-/𝜂. 0 0 −𝑖/𝜂. 0 0]  

Next our task is to decompose the eigen states in the metamaterial into the 

propagating eigen states in the ambient air. We note that the x components of the fields 

must be zero, otherwise the transversality condition of the fields in the ambient air 

would be violated.  

Under normal incident approximation, which means 𝑘+ ≫ 𝑘-,. , at the Weyl 

frequency, Eigen states of the two Weyl points can be written as: 

|𝑊W⟩ = 𝑒XY|𝜑L⟩ + |𝜑Q⟩	

|𝑊3⟩ = 𝑒XY𝑇|𝜑Q⟩ + 𝑇|𝜑L⟩	

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑣.𝑘.
𝑣-𝑘-
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Where is the time-reversal operator for photons, K is complex 

conjugate operator, are the Fermi velocities of the effective Weyl Hamiltonian in 
the y and z direction, which are almost identical in our metamaterial. Due to the 
vanishing of x component fields, the total field of the two Weyl points in the center can 
be expressed as: 
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 Similarly, for the other two Weyl points whose projections are located at large 
k’s, we can write down the angle independent fields as:  

|𝑛3⟩ = g0 0 h=
h>

0 0 𝑖 h=
h>F
i  

Now we define the plane wave modes’ polarizations as linear polarization on either y 
or z: 

  The incident plane waves: 

|𝐼𝑛1⟩ = 𝐸-XW g0 0 1 0 − W
hl

0i 
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1
𝜂"
f 

The reflections: 
 

|𝑅𝑒1⟩ = 𝐸-oW c0 0 1 0
1
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|𝑅𝑒2⟩ = 𝐸-o3 c0 1 0 0 0 −
1
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𝐸-XW, 𝐸-X3, 𝐸-oW	𝑎𝑛𝑑	𝐸-o3 are complex number as weight of each mode in the scattering, 
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and we can define A and B as the weight of |𝑛W⟩  and |𝑛3⟩ 

Obeying the continuity of transverse electric and magnetic fields: 𝐸-XW, 𝐸-X3, 𝐸-oW	𝑎𝑛𝑑	𝐸-o3 

can be expressed by A and B as: 
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These expressions allow us to get rid of A B, and express 𝐸-oW	𝑎𝑛𝑑	𝐸-o3 with 

linear combinations of 𝐸-XW	𝑎𝑛𝑑		𝐸-X3, written in matrix form: 

s
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This is the general expression of the scattering matrix around the Weyl point 
whose phase term of its eigen value is the equation (1) in the main text: 

𝜙W(𝜃) = 𝜙3(𝜃 + 𝜋) = −𝑖 𝑙𝑛
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While this expression yields no concise analytical solutions for its eigenvalue 
and eigenvector a simplification assuming 𝜂. = 𝜂- , meaning the Weyl frequency is far 
from the resonance frequency, could give great simplifications. Note that 𝜂. = 𝜂-  
might not be valid for the realistic Weyl metamaterial design, we still find excellent 
agreement between the numerical simulations and the fitted analytical expression. The 

scattering matrix then reads: 𝑆 =
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and 	
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In the ideal case assuming impedance matching, 𝜂. = 𝜂- = 𝜂" = 1, the first part of the 
scattering matrix S is demolished and can be simplified to equation (2) in the main text 
as: 

	𝑆� = 𝑒GXY g𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 − 𝑐𝑜𝑠 𝜃i 

 

To fit the numerical and the experimental data to equation (1) in the main text, note 

that 𝜂. = ; W
?>

=0.6742 and two extra parameters, a deviation in azimuthal angle ζ and 

an extra phase shift ξ need to be incorporated to fit equation (1) due to the nonlocal 

effects, which gives:  𝜙W$ = 𝜙W(𝜃 + 𝜁) + 𝜉 , 𝜙3$ = 𝜙W$ (𝜃 + 𝜋) . As is shown in the 

Supplementary Figure S2, in small incident angle (4° 6°and 10°), the analytical result 

gives excellent agreement to the numerical results. The fitted 𝜂-  is around 0.97.  

 

Fig. S2. Analytical and numerical reflection phases around the Weyl point at small 

angles. The fitting parameters are: 4°: 𝜂- = 0.9697, ζ = 0.5077	and	ξ = 0.4433; 6°: 

𝜂- = 0.9747, ζ = 0.6347	and	ξ = 0.3173; 10° : 𝜂- = 0.9899, ζ = 0.4443	and	ξ =

−0.2539., 

 

 In Figure 2B, however, due to the large incident angle 45° used in experiments 

since the horn antennas’ large k range, 𝜂-  deviate from the small angle values. In this 

case, 𝜂- = 1.2323 , ζ = 0.4760	and	ξ = −1.0472 . Note that even though the 45° 

incident angle doesn’t satisfy the paraxial limit assumed in the theory, the topological 



feature in the windings of reflection phases remains valid due to the topology of Weyl 

points.  

 

3. Analytical expression of the beam reflected by momentum space vortical mirror. 

Consider a Gaussian beam |𝜑(𝑣o, 𝜃, 𝑥 = 0)⟩ = exp u− ��F

��
v |𝑅⟩	incident onto the 

metamaterial, upon reflection (𝑆�), it would be transformed into |𝜑′(𝑣o, 𝜃, 𝑥 = 0)⟩ =

𝑒GX3Yexp u− ��F

��
v |𝐿⟩, in which 𝑣o is the radial direction Fourier component, 2√𝑎 is 

the 1/e position in the momentum space and 1/√𝑎 is the beam waist in real space. 

Under cylindrical Fourier transformation, |𝜑′(𝑣o, 𝜃)⟩  in the real space reads 

|Φ′(𝑟, Θ, 𝑥 = 0)⟩ =  ¢∫ 𝑑𝑣o ∙ 𝑣o𝑒𝑥𝑝(−
��F
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)𝐽3(𝑣o𝑟)

§
B ¨ exp	(−𝑖2Θ) , where 𝐽� is the 

Bessel function of the first kind, r and Θ are the radial and polar angle of the polar 

coordinate in the real space on the surface of the Weyl metamaterial. The integration 

in the curly bracket is evaluated numerically and is illustrated in Fig. 2E. The phase 

profile is a 4π winding (Fig. 2F) and is consistent with the momentum space phase 

winding, and the total projected Chern number of Weyl points. The reflected beam 

under arbitrary projected Chern number n is given by 

|Φ�
$ (𝑟, Θ, 𝑥 = 0)⟩ = ¢∫ 𝑑𝑣o ∙ 𝑣o𝑒𝑥𝑝(−

��F

��
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§
B ¨ exp	(−𝑖𝑛Θ)    (S1) 

The results for various integer n are provided in Fig. S3. 



 

Fig. S3. Evaluated beam intensity profile according to equation (S1) for different 

integer n. 

 

 

4. Scattering matrix for elliptical polarizations 

The reflection matrix S in equation (2), main text, can be generalized to elliptical polarizations. 

   First, we suppose the scattering matrix operated on a elliptical polarization follows: 

 

According to the decomposition law of unitary matrices, the above equation can be transformed 

as: 

 

Which finally leads to the relations: 
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5. Polarizations of the topological Fermi arcs 

In Fig. S4, We start by showing the Fermi arcs and polarizations of the 7 mm waveguide 

configuration at the Weyl frequency using the numerical reflection data obtained at 10° 

oblique incidents. For simplicity, the scattering matrices are assumed to only varies in 

the angular direction but not along the radial directions.  The corresponding Fermi arcs 

and polarization states are shown below. 

 
Fig. S4. Theoretical spiraling Fermi arcs and the polarizations  

 

In the above figure, the Fermi arcs in the kz-ky plane are shown as solid blue and red 

spiraling lines, corresponding to the numerically solved reflection phases that can be 

fitted with 𝜙W(𝜃) and 𝜙3(𝜃) in Equation (1) in the main text. In-plane (z-y) electric 

field polarizations within the waveguide are obtained by numerically solving the eigen 

states of the corresponding scattering matrix, indicated by the solid black lines. Note 

that along the spiraling of the Fermi arcs, the polarization’s direction rotates. 

Specifically, on the same spiraling Fermi arc, for example the red branch, polarization 

gradually varies from transverse electric (TE) on the A point to transverse magnetic 

(TM) on the B point. This behavior can be easily visualized in the impedance matching 

case whose eigen states are: |𝜙W⟩ = g𝑠𝑖𝑛 Y
3
; 	𝑐𝑜𝑠 Y

3
i and |𝜙3⟩ = g−𝑐𝑜𝑠 Y

3
; 	𝑠𝑖𝑛 Y

3
i. The 

light cone in air is indicated by the dashed green circle where the spiraling is terminated. 

Similar behaviors are found in full wave simulated Weyl waveguide system as is shown 



in the following picture,  

 
Fig. S5. Full wave simulated Fermi arcs and the polarizations. 

 

Note that the detailed pattern of the spiral obtained by simulation is different 

from the theoretical results, due to the fact that: 1) finite Weyl metamaterial sample 

thickness utilized in the full wave simulation, causing deviations especially closer to 

the origin of the momentum space; 2) the scattering matrix could vary along radial 

direction due to higher order dispersions of the Hamiltonian that are neglected in the 

linear theory. However, the simple results have captured the main feature of the 

polarization state, i.e. the rotation of polarizations along the spiraling Fermi arcs. Note 

that the Fermi arcs, after joining the light cone, will gradually connect to the other two 

Weyl points of opposite-handedness outside of the light cone.  

In the experiments, the excitation dipoles are fixed in the our-of-plane direction (x-

axis). Therefore, Fermi arcs closer to the light cone away from the origin of the kz-ky 

plane are more preferentially excited due to the larger oblique angle of plane waves in 

the air, which is also observed in Supplementary Information Figure S8-S9.  Combing 

the Ex, Ey and Ez  results gives better visualization of the spiraling fermi arcs, however, 

there has been no general guidelines for the weight parameters, not only due to the 

complexity of polarization, but also the finite sample size, perturbations from the 



detection dipole, & etc. Closer to the center, the fermi arcs could be further distorted 

due to the increase of the decay length of the surface mode and the finite thickness of 

the sample. 

 

 

 

6. Measuring the surface states of the Weyl metamaterial 

In the experiments, the vector network analyzer (VNA) was used to measure S 

parameters between the excitation and the probe dipole antenna. The Electric field 

is measured by inserting the probe dipole antenna deep into the waveguide from the 

side (as shown in Fig. 3c). The metallic wire connected to the probe antenna will 

interfere with the electric field in the waveguide. To minimize the influence of the 

metallic wire inside the waveguide, we measure the electric field within half y range, 

which is [-az, az]×[-ay, 0]. Through centrosymmetric process, we augment the real 

space data to the whole range of [-az, az]×[-ay, ay]. We probe the electric field of 

Ex, Ey, and Ez with the excitation direction in the x direction. The measured S 

parameter with the waveguide height of 7 mm at 13.5GHz is given in Fig. S6. The 

real space data of Ex, Ey, Ez are in (a-c) and the corresponding Fourier transformed 

data to momentum space (unit-less) are in (d-f). 
 



 

Fig. S6. Experimental data of the near field measurement of Fermi arcs. The 

real space data of Ex, Ey, Ez are in (a-c) and the corresponding Fourier 

transformed data to momentum space (unit-less) are in (d-f). 

 

The measurement results shown in Fig. S7. A x-polarized electric dipole placed 

inside the sample close to the center of the top surface is used as the source, while 

another x-polarized electric dipole probe scans the top surface of the Weyl metamaterial 

to measure the Ex field component. The experimental results agree reasonably well with 

the simulation. The Fermi arcs connect between the light circle which contains two 

projected Weyl points overlapped at the center, and the other two projections of Weyl 

points outside the light circle with opposite chirality. The surface states inside the air 

circle leak into air rapidly and cannot propagate along the surface.  



 
Fig. S7. Surface states of the Weyl metamaterial. (a) Near-field scanning system, 

where the source (red) is positioned in the center and near the top surface. (b) Simulated 

and (c) measured surface states at the frequency of 13.3 GHz. The green dashed circle 

indicates the air equi-frequency contour. The plotted range for the panels along kz and 

ky are [-π/ai, π/ai], i = z, y respectively. 

 

7. Spiral Fermi arcs inside the waveguide. 

The waveguide modes have inhomogeneous polarization configurations along the 

spiral Fermi arcs. To better visualize the spiral character of the Fermi arcs, all the field 

components of Ex, Ey, and Ez are measured and superposed linearly to get the total field.  

Field components of different polarization provide complementary information for 

the observation of the spiral Fermi arcs. To obtain the complete picture of the Fermi 

arcs, we carry out a linear superposition of the field components. In all near field 

measurements, we set the scanning step as 4.5 mm (az) in z direction, and 3 mm (ay) in 

y direction, which provide a surface momentum space range of [-π/az, π/az]×[-π/ay, π/ay] 

after the Fourier transformation.  

To minimize the influence of the metallic wire of the probe antenna inside the 

waveguide, we only measure the electric field within half y range, which is [-az, az]×[-

ay, 0]. Through centrosymmetric process, we obtain the electric filed in the whole range 

of [-az, az]×[-ay, ay]. For the waveguide height of 7 mm, we get the total field by the 

linear superposition of 0.5×Ex+0.5×Ey+Ez, with results shown in Fig. S8. For the 

waveguide height of 11.5 mm, the linear superposition is 0.5×Ex+0.1×Ey+Ez, with 

results shown in Fig. S9. The spiral Fermi arcs for different waveguide heights are also 

y z
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simulated in Fig. S10. As the height of waveguide increases, the spiral Fermi arc winds 

more. When the height of the waveguide approaches infinite, the spiral Fermi arc would 

wind infinitely and become extremely dense, which is equivalent to the bulk states of 

air. 

 

 

 

 
Fig. S8. Spiral Fermi arcs with waveguide height of 7 mm at frequency of 13.3 

GHz. (a) The simulated spiral Fermi arc by Comsol Multiphysics. (b) The spiral Fermi 

arc which is superposed by the measured field components of (c) Ex, (d) Ey, and (e) Ez. 

The black dash-dotted circle denotes the bulk state and the green dashed circle denotes 

the air circle. 
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Fig. S9. Spiral Fermi arcs with waveguide height of 11.5 mm at frequency of 13.3 

GHz. (a) The simulated spiral Fermi arc by Comsol Multiphysics. (b) The spiral Fermi 

arc which is superimposed by the measured field components of (c) Ex, (d) Ey, and (e) 

Ez.The black dash-dotted circle denotes the bulk state and the green dashed circle 

denotes the air circle. 
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Fig. S10. Simulated spiral Fermi arc for different waveguide heights of (a) 0 mm, 

(b) 7 mm, (c) 11.5 mm, (d) 17 mm, and (e) 23 mm at the frequency of 13.3 GHz. 

 

 

  

 

8. Experimental set up for measuring of reflection phases 

For measuring the reflection phases, horn antennas are angled 45 degree to the y-z plane, 

the reflection amplitude and phases are collected by the Vector Network Analyzer 

(VNA) as is shown in Fig. S11. The Weyl metamaterial is rotated according to x axis 

for collecting reflections according to various azimuthal angle.  

 

Fig. S11. Experimental set up for measuring of reflection phases 


