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I. CALCULATION OF THE SPIN BOTT INDEX

In the Sierpinski carpet, the topology of edge states can be characterized by the spin Bott

index, which is a real space Z2 topological invariant. The Bott index discerns whether the

occupied states on a finite torus can be spanned on the basis of localized Wannier functions

[1]. It has been proven that, in an infinite system, the Bott index is equivalent to the Chern

number, and in finite systems, the difference between the Chern number and the Bott index

is within O(1/L), where L is the system size [2].

The energy spectrum of G(2) Sierpinski carpet, in Fig. 1(a), with periodic boundary

conditions (PBC, blue) and hard boundary conditions (HBC, red) at the outer perimeter

is shown in Fig. S1. The system with hard boundary conditions has external, middle,

and internal edge states, while only inner edge states exist in the system with periodic

boundaries. Under periodic boundary conditions, occupied states P can be divided into

two sectors, P+ and P−, where P± =
∑α/2

i |±Ψi⟩ ⟨±Ψi| and |±Ψi⟩ are the eigenstates of

PSyP with positive and negative eigenvalues. Then, we rescale the coordinates of the sites

by a constant factor, making xi ∈ [0, 1] and yi ∈ [0, 1], where i labels the ith site in G(2)

Sierpinski carpet. Next, the projected position operator can be calculated as

U± = P±e
i2πXP± + (I − P±) , (S1)

V± = P±e
i2πY P± + (I − P±) , (S2)

where X and Y are two diagonal matrices with Xij = xiδij and Yij = yiδij. To increase

the stability of the numerical algorithm, we perform a singular value decomposition, M =

ZΣW †, for the position operator U± and V±, and the new position operator is
∼
M = ZW †

[3]. The Bott index for each spin sector is now given by

B± =
1

2π
Im
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log

(
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V ±

∼
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∼
V

†

±
∼
U

†

±

)]}
. (S3)

Finally, the spin Bott index can be calculated as the half-difference between the Bott index

for the two spin sectors:

Bs =
1

2
(B+ −B−) . (S4)
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II. TOPOLOGICAL PHASE OF LIEB LATTICE PHONONIC CRYSTAL

For the periodic Lieb lattice in Fig. S2(a), the spin Chern number can be calculated to

characterize the topology of lowest two bands. The projection operator of the lowest two

bands is P =
∑2

i=1 |Ψi⟩ ⟨Ψi|, where |Ψi⟩ is the eigenfunction of Lieb lattice Hamiltonian. The

spin spectrum can be calculated as the eigenvalues of PSyP , where Sy is the spin operator.

The eigenfunction of PSyP , Φ+ and Φ−, are wavefunctions projected into two spin sectors.

The Chern number for each spin sector can be calculated as:

C± =
1

2π

∫
d2kΩ±(k), (S5)

where Ω±(k) = ∇k × ⟨Φ±(k)|i∇k|Φ±(k)⟩ are spin-dependent Berry Curvatures. The spin

Chern number Cs is calculated as Cs =
1
2
(C+ − C−). It can be seen in Fig. S2(b), the lower

two bands close at hA = 15 mm and reopens with increasing hA. The spin Chern number in

Fig. S2(c) indicates that topological phase transition occurs at the lowest band gap closes.

III. SPECTRUM OF G(2) AND G(3) SIERPINSKI CARPET

The energy spectrum of the G(2) Sierpinski carpet is shown in the Fig. S3(a). The

bulk states (represented by grey dots) exhibit a large central gap with external, middle,

and internal edge states within it, while only external edge states are present in the crystal

lattice. The field distributions of external, middle, and internal edge states are shown in

Fig. S3(b)- S3(d), which correspond to the red, blue, and green solid circle in Fig. S3(a).

Higher order generation of SC shows a similar result that the edge states are self-similarly

distributed. The energy spectrum of G(3) Sierpinski carpets is shown in Fig. S4(a), four

types of edge states exist in the bulk gap, with an increase in the number of edge states

due to the increase in generation. These edge states can be classified into two sectors based

on the spin operator. The spin spectrum slightly deviates from ±1 due to broken spin

conservation, as depicted in the inset of Fig. S4(a). The field distributions of the four

types of edge states are displayed in FIG. S4(b)–S4(e). Although there are more edge states

in higher-order Sierpinski carpet, G(2) Sierpinski carpet and G(3) Sierpinski carpet show

similar results, a hierarchy of edge states in the bulk band gap, exhibiting self-similarity

in their field distribution. Therefore, we deduce that higher-order generation of Sierpinski
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carpet will also support a spin Chern insulator, as the G(2) Sierpinski carpet in the main

text.

IV. VELOCITY MEASUREMENT IN THE LIEB LATTICE

The Lieb lattice, fabricated with the same lattice parameters as G(2) Sierpinski carpet

using photo-sensitive resin via 3D printing, is shown in Fig. S5(a). By selectively exciting

the pseudospin polarized edge state, the measured signal at the 10th site at the edge of

the Lieb lattice is displayed in Fig. S5(b). We extract the upper envelope of the signal

(blue solid line in Fig. S5(b)) and apply a Gaussian fit to obtain the center of the Gaussian

envelope (green star in Fig. S5(c)), which is considered as the signal arrival time. To reduce

random error, we repeat the measurement five times, and perform a linear regression of the

position of the A site and the averaged arrival time, as shown in Fig. S5(d), where the

error bar is the standard deviation for measurement results. The first three and last two

points, located near the source or the corner, deviate from the fitted linear equation and are

therefore omitted in the analysis.

V. PROPAGATION DIRECTION OF EDGE STATE IN SIERPINSKI CARPET

The G(1) Sierpinski carpet can be viewed as a annular film with internal and external

boundaries. For spin Chren system, the propagation of spin up sector is plotted in Fig. S6(a),

where it propagates clockwise along the internal boundary (red arrow) and counterclockwise

along the external boundary (blue arrow) [4]. As G(2) Sierpinski carpet is assembled by

eight G(1) Sierpinski carpets, the propagation of spin up sector is shown in Fig. S6(b).

Removing the vanishing edge states, it can be seen that the external edge state propagates

counterclockwise, opposite to both middle and internal edge states. Similarly, spin down

edge modes transmit in the opposite direction to spin up sector.

VI. THE INCREASING VELOCITY OF THE EDGE STATE

In a fractal lattice, removing the bulk sites induces middle and internal edges, the external

edges are locally close to the internal edges, forming a finite size of 1a. In a finite size, the

4



edge states on the two sides can interact with each other, resulting in changes in the edge

state properties [5]. Due to the finite size effect, the velocity of edge state increases as the

finite size decreases in our structure. In a strip of finite size, we take the size of 17a, 3a and

1a, corresponding to the sizes from the external edge to the external edge in crystal lattice,

from the internal edge to the internal edge, and from external edge to the internal edge in the

fractal lattice, respectively. The strip with 17a, 3a and 1a Lieb lattices and their projected

energy bands are sketched in Figs. S7(a,c). As the size of the Lieb lattice decreases, the

slope of edge state increases in the vicinity of the valence band, as shown in Fig. S7(a).

The velocity of edge state can be calculated as dE/dk, which is plotted in the inset of Fig.

S7(a). The velocity of finite size of 17a, 3a and 1a are −141 m/s, −148 m/s, and −187 m/s

at 6000 Hz (the central frequency of the wavepacket in the experiment), respectively. In

addition, we also calculated the projected dispersion of strip with 10a and 14a in Fig. S7(b).

The finite size effect can be negligible when the lattice size is greater than 10a. The edge

band dispersions for different sizes overlap with each other. Thus, the sound travels faster

at the external boundary due to the existence of finite size effect in Sierpinski carpet.

VII. DETAILS FOR EXPERIMENTS

The experimental sample is fabricated by 3D printing technology with a resin thickness

of 2 mm. Due to the large impedance mismatch with air, the resin boundaries can be

regarded as the hard walls. To measure the field intensity in Fig. 2, A network analyzer

(Keysight E5061B 5 Hz-500 MHz) was used to send and record both the amplitude and

phase of the acoustic signals. A sub-wavelength microphone probe (B&K Type 4961) was

used to measure the acoustic pressure field distributions in the upper layer.

For the measurement of wave packet in Fig. 3, a multi-analyzer system (B&K Type

3560B) was used to generate the Gaussian type wave packet and temporal signal was detected

by the Tektronix TBS 2000 series digital oscilloscope. Due to the inevitable loss in the air,

the sound intensity attenuates during its propagation. Edge 1 consists of A and B sites, while

Edge 2 consists of A and C sites, as shown in Fig. 1a. They are not equivalent. In order

to extract the sound velocities with different pseudospins from the same boundary, only the

external edge state at Edge 1 (see Fig. 3(a)) was measured. The inevitable fabrication errors

also induce inconsistency between two boundaries. For the middle and internal edge states,
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we measured the sound signals along the entire edge.

The Gaussian wave packet A(t) = exp
(
−
(
t−t0
2σ

)2)
sin (2πfct) in the time domain is

plotted in Fig. S8(a). Performing a Fourier transform, the wave packet takes the form

of a Gaussian function in the frequency domain, as shown in Fig. S8(b). The central

frequency of the Gaussian function is fc. To minimize the excitation of bulk states, we set

fc = 6000 Hz, which is the center frequency of the band gap, in the measurement of the

transmission velocity at the boundaries. The dotted line in Fig. S8(b) locates at the half

of the maximum of the Gaussian function and the full width at half maxima (FWHM) is

approximately 500 Hz.
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FIG. S1. Calculated energy spectrum of the G(2) Sierpinski carpet with periodic boundary condi-

tions (PBC, blue) and hard boundary conditions (HBC, red) at the outer perimeter.

FIG. S2. Topological phases transition of the lowest band gap in the Lieb phononic crystals. (a)

The unit cell of the Lieb phononic crystal with the length a = 22 mm, other parameters are

consistent with the main text. (b) Bulk bands at M point (kx = π, ky = π) as a function of the

height of cavity A. The lowest band gap closes at hA = 15 mm. (c) Spin Chern number of the

lowest two bands indicates that topological phase transition occurs at the lowest band gap closes.
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FIG. S3. Calculated spin-polarized edge state. (a) Numerically calculated energy spectrum of

the fractal lattice. (b)-(d) Simulated field intensity profile of the (b) external (c) middle, and (d)

internal edge states, which are denoted as the red, blue, and green solid circles in (a).
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FIG. S4. (a) Numerically calculated energy spectrum of the G(3) Sierpinski carpet showing four

types of edge states in the bandgap denoted as Edge State 1, 2, 3, and 4. The inset shows the spin

spectrum of the edge states. (b)-(e) Field distribution of edge states 1, 2, 3, and 4, respectively.
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FIG. S5. (a) Photograph image of the fabricated acoustic Lieb lattice. (b)-(d) Procedure to obtain

the velocity of the spin-down edge state in the Lieb lattice. (b) Measured wave packet at the 10th

site (black solid line) with the upper envelope of the wave packet extracted (blue solid line). (c)

Gaussian fit to the extracted envelope, with the center of the Gaussian-fitted envelope (green star)

providing the signal’s arrival time. (d) Linear regression of the position of the A site in each unit

cell and the averaged arrival time of the signal at the A site. The first three and last two data

points are omitted due to their proximity to the source or the corner.
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FIG. S6. The propagation of spin up edge state in G(1) and G(2) Sierpinski carpet. (a) Spin

up edge state propagates clockwise along the internal boundary (red arrow), and counterclockwise

along the external boundary (blue arrow) in G(1) Sierpinski carpet. (b) G(2) Sierpinski carpet

consists of eight G(1) Sierpinski carpets. For spin up sector, the external edge state propagates

opposite to both middle and internal edge states.
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FIG. S7. (a) The simulated projected energy bands of strip with 17a (blue), 3a (red), and 1a

(green) Lieb lattices. Inset: the calculated velocity of edge states with different finite sizes. We

label the velocity of 17a (square), 3a (pentagram), and 1a (circle) at 6000 Hz, respectively. (b)

The simulated projected energy bands of strip with 10a (green), 14a (red), and 17a (blue) Lieb

lattices. The finite size effect is negligible when the lattice size is greater than 10a. (c) The strip

with 17a, 3a, and 1a Lieb lattices in the y direction. Periodic boundary conditions are set in the

x direction.
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FIG. S8. (a) Wave packet in the time domain (b) Signal in the frequency domain, obtained by fast

Fourier transform.
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