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FROM TYPE-II TO TYPE-I WEYL POINT

We start from the tight-binding model proposed by Xiao et. al. [1]. The Hamiltonian of

the system can be written as

H (k) =

εa + 2ta cos (kzh) + tcf (kzh) tnβ

(tnβ)
∗ εb + 2tb cos (kzh) + tcf (−kzh)

 , (1)

where

β = exp(−ikya) + 2 cos(
√
3kxa/2) exp(ikya/2),

f(kzh) = 2 cos(
√
3kxa− kzh) + 4 cos(3kya/2) cos(

√
3kxa/2 + kzh),

εa and εb represent the sublattice on-site energy. ta, tb are the interlayer non-chiral hopping,

tc is the interlayer chiral hopping, and tn is the intralayer hopping. ta, tb, tc, tn are real and

can be positive or negative for different bands. The Hamiltonian can also be written in the

Pauli matrix form

H(k) = d0I + dxσx + dyσy + dzσz, (2)

where

d0 =
εa + εb

2
+(ta+tb) cos(kzh)+tc

[
2 cos(

√
3kxa) cos(kzh) + 4 cos(

3kya

2
) cos(

√
3kxa

2
) cos(kzh)

]
,

dx = cos(kya) + 2 cos(

√
3kxa

2
) cos(

kya

2
),

dy = sin(kya)− 2 cos(

√
3kxa

2
) sin(

kya

2
),

dz =
εa − εb

2
+(ta−tb) cos(kzh)+tc

[
2 sin(

√
3kxa) sin(kzh)− 4 cos(

3kya

2
) sin(

√
3kxa

2
) sin(kzh)

]
.

The Weyl point can only exist along KH(K ′H ′) lines [kx = 4π/(3
√
3a),ky = 0 for KH] of

the Brillouin zone (BZ) where the off-diagonal terms vanish. The band dispersion along KH

is E1 = εb+2tb cos(kzh)+6tc sin(kzh−π/6) and E2 = εa+2ta cos(kzh)− 6tc sin(kzh+π/6).

Here we set εa = εb (the εa ̸= εb case can be solved numerically). For structures with

unequaled interlayer hopping term tb and without chiral coupling (tc = 0), we get type-II

Weyl points when ta and tb are both positive or negative, otherwise we get type-I Weyl

points. For the lowest two bands of our structure, we have ta < tb < 0 thus type-II Weyl

points are achieved. When we gradually increase the chiral coupling tc (tc < 0 for the lowest
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two bands), the type II Weyl points will finally turn into type I Weyl points. The kz position

of Weyl points can be solved by

ta − tb
3tc

=
cos(2π/3 + kzh)− cos(2π/3− kzh)

cos(kzh)
. (3)

At K point [kx = 4π/(3
√
3a), ky = 0], the positions of the Weyl point 1 (WP1) and Weyl

point 2 (WP2) are kz(WP1) = −kz(WP2) = kz0 for tc = 0, and 0 < kz(WP1) < kz0 <

−kz(WP2) < π/h for tc < 0, where kz0 = π/2h for εa = εb. From the dispersion at Weyl

points, the turning point of type-II to type-I is

tc =
1

18
(−ta + tb −

√
t2a + 22tatb − 23t2b).(ta < tb < 0, tc < 0) (4)

The corresponding phase diagram is shown in Fig. S2. The hopping strength can be tuned

by changing the radius of the connecting tubes in acoustic systems. In the real acoustic

systems, the position of Weyl points slightly shifts as the connecting tubes changes the on-

site energy εa and εb. Although the tight-binding model cannot strictly describe the whole

band dispersion, it can predict the band behavior, which is very useful in guiding the design

of acoustic systems. The fitting results of the tight-binding model are shown in Fig. S1,

where the relation between energy and frequency is E ∝ ω2. The red circles and blue squares

are from the simulation in the main text. The fitting parameters are εa = 3.58, εb = 3.60,

ta = −0.55, tb = −0.31 and tc = −0.034 in arbitrary unit.

THE CHIRALITY OF WEYL POINTS

The effective Hamiltonian around the Weyl point can be written into the general form

[2]

H(δk) =
∑

δkivijσj, i, j ∈ {x, y, z}. (5)

where vij are the group velocities and σj are the Pauli matrices. AtK point [kx = 4π/(3
√
3a),

ky = 0] the group velocity matrix is

vij =


−3atn/2 0 0

0 3atn/2 0

0 0 −h (ta − t
b
) sin (kzh)− 3

√
3htc cos (kzh)

 (6)

for ta < tb < 0 and tc ≤ 0, the chiralities (topological charges) are c = sgn[det(vij)] = −1

for WP1 and c = +1 for WP2, respectively.
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TYPE-II WEYL PHONONIC CRYSTAL WITHOUT CHIRAL COUPLING

The schematic of phononic crystal without chiral coupling is shown in Fig. S3a. The

geometric parameters are the same as the chiral structure. As this system still has mirror

symmetry with respect to the y-z plane, the Weyl points of opposite charges are in the same

kz planes in the reciprocal space. Therefore, the net charge in the horizontal light green

plane in Fig. S3b is zero and the Weyl points share the same degenerate frequency as shown

in Fig. S3c. The Weyl points lies in K and K ′ points with kz = ±0.56π/h at f = 9525

Hz. The band structures in two-dimensional (2D) BZ planes kz = 0 and kz = 0.56π/h are

shown in Fig. S3d,e. Although the type-II Weyl points can exist without chiral coupling,

the one-way surface acoustic waves (SAWs) can not exist at XZ and YZ surfaces because

the topological charge of Weyl points cancel out through projection to the surfaces. The

Weyl points also have the same frequency which means the SAWs are hard to be observed in

the experiment. Here we compare the simulation results of surface states with [Fig. S4a,c]

or without chiral coupling [Fig. S4b,d]. The field distribution in Fig. S4b is clearly a bulk

state, which is apparently different from the SAW in Fig. S4a. The XZ surface bands in

the chiral phononic crystal at kz = 0.6π/h plane are shown in Fig. S4c, where the SAWs

propagating along XZ1 or XZ2 surface are denoted with green solid lines or dashed lines,

respectively. The XZ surface bands in the non-chiral phononic crystal at kz = 0.56π/h are

shown in Fig. S4d. No topological surface states are found in kz = 0.56π/h or other kz

planes.

DIRECT OBSERVATION OF THE SAWS

We demonstrate the existence of the Fermi arc-like surface states associated with the

type-II Weyl points. To probe for surface states, we put a point-like sound source at the

top of XZ1 surface to stimulate the −kz part of the surface states. Figure S5a shows the

pressure field distribution of sound travelling from the XZ1 to the YZ1 surface at Fermi

frequency 9600 Hz. No clear reflection signal is observed near the interface, unlike the

conventional wave response to an interface. The sound is still coupled to the bulk modes,

whether the frequency is between the Weyl points or not, which is exactly as expected for

the type-II Weyl points. The pressure field distributions are shown in Fig. S5b-e for different
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layers, indicating that a large amount of energy penetrates into the bulk while the SAWs

are still hold in the surfaces. The signal reduces from intrinsic material absorption of air

and scattering into bulk states. This measurement of robust propagation of a surface wave

across the corner serves as a direct observation of the topological SAWs.

EXPERIMENT METHODS

A loudspeaker is used as sound source in the experiment measurements. The loudspeaker

(diameter = 15 mm) is placed inside the sample at the center of the bottom layer for bulk

states excitations. For surface states measurements, a sub-wavelength headphone (diameter

= 5.7 mm) is used for sound excitations. The headphone is placed at the center of the

corresponding surfaces with rigid boundaries. The sound sources are motivated by a broad-

band pulse. For the measurement of acoustic fields, a sub-wavelength microphone (diameter

= 6.35 mm, B&K Type 4961) attached to the tip of a stainless-steel rod (diameter = 4

mm) is inserted into the sample through the space between the plates. Another identical

microphone is fixed which serves as the phase reference. The acoustic signal is analyzed by

a multi-analyzer system (B&K Type 3560B), with which both the amplitude and phase of

the wave are extracted. The frequency spectrum for each point is obtained by averaging 110

FFT (Fast Fourier Transformation) results within 9.5 seconds. The scanning is performed

by a stage moving in three directions. According to Nyquist-Shannon sampling theorem, a

sufficient sampling rate (Fs) to map out the Brillouin zone is no less than one sample per

period. The steps of the stage are 10.0 mm (Fsx = 2.2), 19.1 mm (Fsy = 2) and 17.3 mm

(Fsz = 1) in the x, y and z directions, respectively. The bulk and surface dispersions of the

acoustic system are obtained by Fourier transforming the measured fields. The resolutions

of Fourier transform along x, y and z direction are 0.037 × 2π/
√
3a, 0.069 × 2π/3a and

0.069π/h, respectively, which are restricted by the number of lattice periods. The measured

pressure fields distribution is normalized by the source spectrum.

∗ hcheng@nankai.edu.cn

† schen@nankai.edu.cn
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FIG. S1. The fitting results of the tight-binding model. The red circles and blue squares are the

simulation results. The corresponding fitting results are in solid lines. The fitting parameters are

εa = 3.58, εb = 3.60, ta = −0.55, tb = −0.31 and tc = −0.034 in arbitrary unit.

0.0 0.5 1.0
-0.15

-0.10

-0.05

0.00

Type-I

t c

tb/ta

Type-II

FIG. S2. Phase diagram of the Weyl phononic crystal with εa = εb.
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FIG. S3. (a) The schematic of the non-chiral type-II Weyl phononic crystal. (b) The first bulk

BZ of the Weyl phononic crystal. The colored spheres label Weyl points with different topological

charges. (c-e) The band structures along the high symmetry lines (c) in KH direction and (d,e)

2D BZ planes.
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FIG. S4. XZ surface states of the phononic crystal (a, c) with interlayer chiral coupling, (b,

d) without interlayer chiral coupling. (a, b) Pressure eigenfield distribution. (c, d) Surface band

dispersion. The Bloch vectors are kx = 0.33×2π/
√
3a, kz = 0.6π/h for (a) and kx = 0.33×2π/

√
3a,

kz = 0.56π/h for (b), which are denoted with red cross in (c) and (d), respectively.
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FIG. S5. Direct observation of Fermi arc-like surface acoustic waves. (a) Pressure field distribution

of acoustic surface waves travelling from the XZ1 to the YZ1 surface. (b-e) Field distribution of

different layers at (b) layer 2, (c) layer 7, (d) layer 12 and (e) layer 18. The sound source is placed

at the center of the uppermost layer in XZ1 surface, denoted as the red arrow. The Fermi frequency

is 9600 Hz.
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