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Hyperbolic metamaterial empowered
controllable photonic Weyl nodal line
semimetals

Shengyu Hu 1, Zhiwei Guo 1 , Wenwei Liu2,3,4, Shuqi Chen2,3,4,5 &
Hong Chen 1

Motivated by unique topological semimetals in condensedmatter physics, we
propose an effective Hamiltonian with four degrees of freedom to describe
evolutions of photonic double Weyl nodal line semimetals in one-dimensional
hyper-crystals, which supports the energy bands translating or rotating inde-
pendently in the formofWeyl quasiparticles. Especially, owing to the unit cells
without inversion symmetry, a pair of reflection-phase singularities carrying
opposite topological charges emerge near each nodal line, and result in a
unique bilateral drumhead surface state. After reducing radiation leakages and
absorption losses, these two singularities gather together gradually, and form
a quasi-bound state in the continuum (quasi-BIC) ring at the nodal line ulti-
mately. Our work not only reports the first realization of controllable photo-
nics Weyl nodal line semimetals, establishes a bridge between two
independent topological concepts−BICs and Weyl semimetals, but also her-
alds new possibilities for unconventional device applications, such as dual-
mode schemes for highly sensitive sensing and switching.

Beyond Landau’s classic approach based on spontaneously broken
symmetries, topological theory provides a new perspective on the
classification paradigm, including gapped phases like topological
insulators1, and gapless phases like topological semimetals2. During
the past decade, topological semimetals have been widely discussed
for emulating relativistic quasiparticles3, for example, fourfold Dirac
fermions4,5 and even twofold Weyl fermions6,7, which possess linear
crossing bands with unique transport properties like delocalization8,
Zitterbewegung9,10, and Klein tunneling11,12. Through breaking inver-
sion symmetry and/or time-reversal symmetry, one Dirac fermion can
split into a pair of Weyl fermions carrying opposite two-dimensional
(2D) topological charges,which are definedby thedistinguishedChern
number13,14. Such transition establishes a template for the double Weyl
semimetals15. Moreover, these gapless phases can be classified into

nodal points, nodal lines, and nodal surfaces according to the dimen-
sions of band degeneracy areas. For example, Gapless phases can
proceed to transit from a pair of Weyl nodal points to a single Weyl
nodal line after eliminating spin-orbital coupling16 or introducing the
time-reversal symmetry17, and Nielsen-Ninomiya no-go theorem
determines that such nodal lines tend to be globally trivial18,19. Local
properties of one-dimensional (1D) topological charges are widely
discussed hence: on the intersecting surface, any loop interlocking
with/without the nodal line has π/0 Berry phase (owing to the Z2

class), and nontrivial Berry phase protects the nodal line20 and drum-
head surface state (DSS)21 effectively. For multi-band configurations of
nodal lines, like nodal chains22 and nodal links23,24, additional qua-
ternion charges are determined by the geometric relation between
different intersecting surfaces, and exhibit non-Abeliancharacteristics.
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Otherwise, recent interests are inspired in dual nodal rings, which
transit from different Weyl nodal points respectively. Such dual-band
configurations recover the discussion of real Chern number, and
induce higher-order topological states25,26. As the basic elements
among these configurations, single rings27 or straight lines28 construct
the enormous territoryof nodalphysics. Itwouldbe highly desirable to
excavate their evolution dynamics and new topological features.

In this paper, we propose simple structures as 1D photonic crys-
tals (PCs) have, and they can provide a versatile platform to exhibit
flexible phase transitions of double Weyl nodal rings (WNRs), which
are composed of two uncoupled WNRs with different polarizations.
After considering hyperbolic metamaterials (HMMs) with conductive
sheets into PCs, we introduce additional degrees of freedom (DOFs) of
rotation and translation into photonic Weyl quasiparticles, which
could hardly coexist and be modulated independently in previous
systems. Based on such a platform, some unprecedented topological
properties of WNRs, which tend to be seen as relatively trivial for lack
of complex topological structures, are further elucidated. Generically,
the above-mentioned DSS resides unilaterally in the electronic21,26 or
photonic systems5,27, corresponding to the region with nonzero Berry
phase inside or outside the nodal ring. However, by breaking the
inversion symmetry of unit cells here, a pair of reflection-phase sin-
gularities (related to the exceptional points, EPs) carrying opposite
topological charges emerge near eachWNR, and pin a unique bilateral
DSS, which spans both the inner and outer regions of the WNR on the
projected surfaceBrillouin zone. After reducing radiation leakages and
absorption losses, the two singularities of bilateral DSS can gather
together and form a scattering-matrix singularity (corresponding to a
bound state in the continuum, BIC) at the WNR ultimately. Given that
this result is widely available for the above semimetal phases of rota-
tion or translation, our results first unveil DSSs become an intriguing
bridge between two subfields of topological physics, Weyl semimetals
and singularities (EPs and BICs), which have been rarely discussed
before.Wherein ill-defined singularities include EPs andBICs under the
framework of scattering theory. The EP denotes the coalescences of
eigenstates, and the BIC is a unique mechanism with zero leakage and
zero linewidth29,30, and widely discussed with the structure containing
in-plane anisotropic materials31,32, or epsilon-near-zero materials33,34 in
the 1D layered system before. On the other hand, such Weyl quasi-
particles possessing the properties of quasi-BICs can be manipulated
through DOFs of rotation or translation, generating degenerate quasi-
BICs in the phases ofDiracor quasi-Dirac nodal rings. At the same time,
phase singularities possess analogous properties, and we propose a
sensing strategy of dual modes based on Heaviside-like phase jumps
near the singularities with two polarizations.

Results
Phase transitions of rotation and translation
Before delving into the details of the 1D PC, we focus on an intuitive
theoretical model that reveals the intricate classifications between
various Weyl nodal line semimetals (WNLSs). In the compound space
composed of energy E andmomentum q, a nodal line can be seen as a
2D manifold containing infinity nodal points. Such properties exist
naturally in complicated systems, including famous WNLSs and Dirac
nodal line semimetals (DNLSs). Typically, the WNLSs can be described
by a two-fold-degenerate Hamiltonian. With co-dimension 2 of nodal
lines, it is necessary introducing two variables qa and qb to construct a
subspace35. The effective Hamiltonian can take the form of
HI =HðΔ,ϕ,q1,q2Þ, where constants Δ, ϕ, q1, and q2 provide four
modulation DOFs of the Weyl quasiparticle. Especially, the detune Δ
denotes the initial energy of the Fermi surface (FS), which determines
the position of the nodal line. The tilt angle ϕ controls the rotation of
the cone-like band around the axis of qa = q1, which lies on the FS.
Three regions of ϕ, ðnπ � π=4,nπ +π=4Þ, ðnπ � π=4,nπ +3π=4Þ, and

critical nπ ±π=4ðn 2 ZÞ differentiate the type-I, type-II and type-III
WNLSs, as shown in Fig. 1a–c, respectively. Observing the band pro-
jection on the plane E =Δ, type-I/II/IIIWNLSs have point-like/cross-like/
line-like FSs, colored by red. It is notable that type-III WNLSs have a
unique band edge mode, which supports zero group velocity. In the
extended space E � q, the constants q1 and q2 are related to the vari-
ables qa and qb, which have a decisive influence on the 2D route of
nodal lines. In 1D photonic systems, a conversant configuration is the

WNR, which qa and qb are chosen as qa = kρ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x + k

2
y

q
and qb = kz ,

respectively. Here, kρ, kx , ky, and kz represent the wave vectors along
the radial x, y, and z directions5. As is shown in Fig. 1d–f, they can be
deemed as the cone-like bands moving along the routes marked by
white lines. And q1 corresponds to the radius of the nodal ring. Typi-
cally, q1 (q2) describes the sizes of closed manifolds or locations of
open manifolds for projections along qa (qb). Subsequently, we focus
on the situation of decoupled multi-quasiparticles, where double
WNRs for different pseudospins α and β coexist in the E � q
space. The effective Hamiltonian turns into: HII =H

α
I

ðΔα ,ϕα , qα
1 ,q

α
2 Þ � Hβ

I ðΔβ,ϕβ, qβ1 , q
β
2Þ. Focusing on the DOFs of location

(Δ, q1,q2), double WNLSs can be classified into three steps: DNLSs

( Δα , qα1 ,q
α
1

� �
= fΔβ, qβ1 , q

β
1 g), quasi-DNLSs (Δα =Δβ, qα

1 , q
α
1

� �
≠ fqβ

1 ,q
β
1 g)

and other isolated WNLSs ( Δα , qα1 ,q
α
1

� �
≠ fΔβ, qβ1 , q

β
1 g) as shown in

Fig. 1g–i respectively, which correspond to the evolutionary process of
translation with the gradual separation in the dimension of momen-
tum and energy. This effective Hamiltonian might be realized in the
systems supporting two orthogonal modes, like polarizations in elec-
tromagnetic or elastic waves36, or two different mechanisms, like
electromagnetic and elastic waves37,38.

Photonic Weyl nodal line platform
Then we study the above-mentioned double WNLSs in the photonic
system, where qa corresponds to the radial wave vector kρ = k0 sinθ,

while qb corresponds to the Bloch wave vector kz . k0 =ω=c is the wave
vector in a vacuum with the angular frequency ω as well as the light
speed c, and θ is the incident angle. In Fig. 2a, we sketch a 1D PC (AB)N
composed of the HMMAwith substructure dielectric/graphene/metal
stacks (CGD)S, and the isotropic dielectric B. Here BeO (εBeO ≈ 1:708)39

and GaAs (εGaAs ≈ 3:48)
40 are respectively selected for the dielectric

layers B and C with slight dispersion near the working frequency (see
Supplementary Information, Sec. IX for more details). The indium tin
oxide (ITO) is selected for themetal layer D, and its permittivity can be
described by the Drude model41: εD = ε1 � ω2

pD=ðω2 + iωγDÞ, where

ε1 = 3:9 is the high-frequency permittivity. Assuming _ωpD = 2:48 eV,
_γD =0 eV in the lossless case and _γD =0:1_γ0 =0:0016 eV in the lossy
case, ωpD (γD) denotes the plasma (damping) frequency. Moreover,
each layer is presumed as nonmagnetic, i.e. μB =μC =μD = 1. Here gra-
phene is selected for the conductive sheet G to provide a modulation
DOF involving Δ and q1, and its surface conductivity can be described

as42–44: σG = i e2EF

π_2ðω+ iτ�1Þ, where τ =μEF=ðev2f Þ is the relaxation rate, and

EF = _vf
ffiffiffiffiffiffiffiffiffi
π nj jp

is the Fermi energy (FE). Here μ= 104 cm2 � V�1 � s�1,

vf ≈ 10
6 m/s (Supplementary Information, Sec. IX), and EF can be

modulated flexibly through electrostatic doping with tuning charge-
carrier density n43.

According to the effectivemedium theory, the permittivity tensor
components of the layer A are given by (Supplementary Information,
Sec. I):

ε== = εAx = εAy = εCδC + εDδD +
iσG

ε0ωd
, ε? = εAz = 1=ðδC=εC + δD=εDÞ, ð1Þ
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where ε0 denotes the vacuum permittivity, d =dC +dD denotes the
thickness of the unit cell, and δC,D =dC,D=d is the filling ratio of the
bulk layer C/D. Incidentally, the thickness of each layer is chosen as
dA = 1210 nm, dB = 2696 nm, dC = 44 nm and dD = 11 nm, namely S=22
is the number of periods within the HMM. As is shown in Fig. 2b, the
structure (CD)S can be equivalent to an HMM from 230 to 300THz
(ε==ε? <0), and the real part of ε== raises with increasing of the FE from
0.93 to 1.43 eV. We first consider EF =0:93 eV, and calculate the
transmittance spectra of actual structure [(CGD)SB]N with the transfer
matrix method. In Fig. 2c, d, band degeneracies exist at the point
(f 0 = 288:2 THz, kρ0=k0 = 0.7325) for both polarizations, correspond-
ing to the condition5:

αι =
enι
AdAenι
BdB

=
mι

nι
2 Q ð2Þ

where the superscript ι represents the transverse-electric (TE) or
transverse-magnetic (TM) polarization (playing the role of pseudos-

pins), and mTE = 7, mTM =nTE =nTM =8. Here, enTE
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εiyμix �

μixk
2
ρ

μiz k
2
0

r
and

enTM
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εixμiy �

εixk
2
ρ

εiz k
2
0

r
(i =A, B) are the effective refractive indexes for TE

andTMmodes, respectively. The anisotropybetween in-plane andout-
of-plane directions breaks the electromagnetic duality in the layer A,

i.e.
ε==
ε?

≠
μ==

μ?
, whichprovides a theoretical basis for relatively independent

and flexible band modulations for two pseudospins. Here the band
edges for TE and TM modes (white dotted lines) correspond to
kz=kΛ =0:5 and kz=kΛ =0 respectively, which rely on the parity of
mι +nι (ι = TE, TM). For example, ðmTE +nTEÞmod2= 1 implies the band
edges of kz=kΛ =0:5 (Supplementary Information, Sec. II). The interval

along kz denotes such band structure corresponds to the phase of
quasi-DNLSs. Moreover, the tilt angles are also distinct. We notice the
thickness ratio meets the phase variation compensation effect for TM
waves at the frequency of the degenerate point41, which unveils the
unique competition between the negative group velocity coming from
the HMM layer A and the positive group velocity coming from the
dielectric layer B:

dB=dA = �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε==εB=μ==

q
=ε?: ð3Þ

Thus, the crossing band for the TM (TE)mode corresponds to a unique
Type-I (Type-II)WNLS. Thenwe change the FEof graphene and retrieve
the degenerate point based on Eq. (1). In Fig. 2g, the degenerate points
for two modes almost move in the same trajectory but with different
velocities attributing to the breakof duality. FromFig. 2e, f, twoWNLSs
with different polarizations are separated in the space E � kρ � kz ,
corresponds to the phase of isolated WNLSs, but the topological-
symmetry-protectedbanddegeneracies remain stable. In that case, the
layers of graphene introduce the DOF of translation into the Weyl
quasiparticles.

The break of duality is also manifested in the DOF of rotation.
Linkedwith a fixed point (f ι0, k

ι
ρ0), this parameter group of thicknesses

can be denoted as (dA, dB), and each element in the set
fðPιdA=m

ι,QιdB=n
ιÞjfPι,Qιg 2 Z+ gwill alsomeet the rational condition

in Eq. (2) simultaneously, which turns into αι
new = Pι

Qι 2 Q naturally. For
TMmodes, the electric HMM for the layer A provides a negative group
velocity, while the dielectric for the layer B provides a positive group
velocity. With the change of the ratio of the thicknesses, the group
velocity of the whole 1D PC is able to be modulated almost
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Fig. 1 | Phase transitions inWNLSs. a–f illustrate the DOF of rotation. In E � qa �
qb space, diversified Fermi surfaces (FSs) colored by red: a Type-I phase with point-
like FS. b Critical type-III phase with line-like FS. c Type-II phase with cross-like FS.
d–f The corresponding nodal rings (the white lines) in E � kx � ky space evolved
from the degenerate points. g–i illustrate the DOF of translation. Started from the

fourfold DNLS, the Weyl quasiparticle for pseudospin β separates from that for
pseudospin α in the space of momentum (quasi-DNLS) and energy (isolated
WNLSs). The degenerate points and the zero-energy planes are represented by the
red points and the mesh surfaces, respectively.
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continuously within a scope, which induces the unique phase transi-
tions among Type-I/II/III WNLSs, as shown in Fig. 2h–k. Here
dA0 =

PTM

mTM dA and dB0 =
QTM

nTM dB. Noteworthy, taking the effectiveness of
Eq. (1) into account, dA0 here is regulated by changing the period
number S of the HMM layer A, that is S’ = 2 S = 44. We can also get the
critical condition of Type-III WNLSs (Supplementary Information,
Sec. III):

PTM

mTM

 !2

+
QTM

nTM

 !2

� ηTM
Az

ηTM
Bz

+
ηTM
Bz

ηTM
Az

 !
PTM

mTM

QTM

nTM =0, ð4Þ

where ηTM
iz =

nTM
i
εix

(i = A, B) are the impedances for the TM mode. Take
the actual structure in Fig. 2 as an example. Since ηTM

Az
ηTM
Bz

+ ηTM
Bz

ηTM
Az

=2:2267
near the degenerate point, we can get two solutions of Eq. (4),
QTM

nTM =0:68 PTM

mTM together with QTM

nTM = 1:4706 PTM

mTM. Compared with the
actual result QTM

nTM =0:5 PTM

mTM in Fig. 2i together with QTM

nTM = 1:5 PTM

mTM in Fig. 2k,
the difference may come from the slight dispersions of the layers.
Meanwhile, the tilt angles almost remainunchangedwith the changeof
the thickness ratio due to the positive group velocity of both the layer
A and B for the TE mode, which are analogous to all-dielectric PCs
(Supplementary Information, Sec. III). In that case, the layers of HMMs
introduce the DOF of rotation into the Weyl quasiparticles.

Inspired by Feynman’s classical thought about nanoparticles,
quasiparticles in the form of nodal rings, the simplest closed

topological configurations, may play the role of basic elements and
provide a bottom-up method to construct more complicated band
structures, like nodal chains, nodal links, and even new topological
phases. However, coupling between quasiparticles tends to change
their band structure destructively in the process of assembling. To
overcome this point, decoupled multi-quasiparticles can provide a
flexible platform. On the other hand, coupling18 like gyrotropic or
chiral effects45 can be introduced actively, which may lead to more
DOFs of modulation.

Bilateral DSS and singularities
From Fig. 2, it can be seen that the phases of double WNLSs are inex-
tricably linked with the positions of degenerate points, and able to be
modulatedflexibly through the parameters, such as the FEof graphene
and the thicknesses of component layers. Then we will discuss the
properties of the bandgap detailly. Typically speaking, single-negative
(SNG) materials, including epsilon-negative (ENG) and mu-negative
(MNG) materials, only support evanescent waves and correspond to
the bandgaps. However, a paired structure composed of both ENG and
MNG metamaterials will support tunneling mode, namely edge states
formed at the boundary between ENG andMNG. For unit cells without
inversion symmetry like the structure in Fig. 2a, their bandgaps can
carry components of both ENG and MNG simultaneously. To demon-
strate this,we illustrate the reflectionphasesφr for the TE polarization.
As is shown in Fig. 3a, there exist two kinds of photonic insulators at
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Fig. 2 | Platform ofWNLSs with DOFs of translation and rotation. a The scheme
of a 1D hyper-crystal: (AB)N, where the electric HMM layer A is mimicked by sub-
wavelength dielectric/graphene/metal stacks as (CGD)S. b Effective permittivity
parameters of the structure (CGD)S. c, d Transmission spectra of the actual struc-
ture [(CGD)22B]20 for TE and TM waves with band edges (white dotted lines)
kz=kΛ =0:5 and kz=kΛ =0 respectively when EF =0:93 eV (corresponding to the
quasi-DNLS) e, f Similar to (c, e), but EF = 1:43 eV (corresponding to the isolated
WNLSs). Here kΛ = 2π=Λ is the basic reciprocal vectors with the unit cell length
Λ=dA +dB. g Translation evolution trajectories of the degenerate points with EF 2

0:1,1:5½ � eV for TE (blue dashed line) and TM (red solid line) waves. Several
momentous points are marked by circles (TE) or triangles (TM) with EF =0:43 eV,
0:93 eV, 1:43 eV, respectively. For TM waves, the transmittance spectra of the 1D
hyper-crystal [(CGD)44B’]20 with different thickness factors (and EF =0:93 eV): (h)
PTM = 16, QTM = 4 (type-II WNLS); (i) PTM = 16, QTM =8 (type-III WNLS); (j) PTM = 16,
QTM = 16 (type-I WNLS); (k) PTM = 16, QTM = 24 (type-III WNLS). Here dB’ =

QTM

nTM dB,
where nTM =8 and dB = 2696 nm. The arrows show the rotation transitions between
three types of WNLSs.

Article https://doi.org/10.1038/s41467-024-47125-7

Nature Communications |         (2024) 15:2773 4



the same bandgap, respectively corresponding to ENG φr 2 ½�π, 0�
(gradient red) and MNG φr 2 ½0,π� (gradient blue) phases, which are
separated by black lines (φr = ±π)46. Then, we add an extra 20 nm
silver layer E before the incident interface of PC in Fig. 2a, and its
permittivity can also be described by the Drude model εE = ε1 �
ω2

pE=ðω2 + iωγEÞ where ε1 =4:09, ωpE = 1:33 × 10
16 rad/s, and

γE = 1:33 × 10
14 rad/s. As an example, the reflection phases of

kρ=k0 =0:4 and kρ=k0 =0:8 are plotted respectively in Fig. 3b, c,
belonging to the regions inside and outside the nodal ring. When we
cut a period ½�π,π� of the axisφr , twist and glue end to end, the plane
of f � φr is molded into a cylinder, where the upper region (gradient
blue) and the lower region (gradient red) correspond toMNG and ENG
phases, respectively. There is no doubt the metal layer E (the red line)
corresponds to the ENG phase. And for kρ=k0 =0:4, the condition of a
stable DSS φAg +φPC =0

27,47 is satisfied near f = 273:52 THz (the cyan
star), corresponding to a dip of the reflection RAg+PC (the orange line)
in Fig. 3b. Here φAg and φPC are the reflection phases φr of the silver
layer E and the PC ½ðCGDÞ22B�20, respectively, φAg +φPC is their sum,
and RAg+PC corresponds to the reflection of the composite structure
E½ðCGDÞ22B�20. Similarly, for kρ=k0 =0:8, the corresponding frequency
changes into f = 292:44 THz. Analogous conclusions can be obtained
for the TM polarization. Nevertheless, φr 2 ½�π, 0� (φr 2 ½0,π�) corre-
sponds to the MNG (ENG) phase currently (Fig. S5 in Supplementary
Information, Section III). In that case, the DSSs exist both outside and
inside the nodal ring, as shown in Fig. 3d, e. (More details about

unilateral DSSs when restoring the inversion symmetry can be seen in
Fig. S6 in Supplementary Information, Section IV) Their topological
properties can also be characterized by the reflection phase φr . In
Fig. 3f, two singularities for the TE wave exist near the points A
(f 0 = 291:47 THz, kρ0=k0 =0:78) andB (f 0 = 277:75 THz, kρ0=k0 =0:53),
which are divided from an ideal BIC with trivial topological charge
(Supplementary Information, Sec. V). By tracing an anticlockwise
closed loop around these points, two singularities A and B carry
integer topological charges characterized by winding number ν = (1/
2π) ∮ dφr =+1 and�1 respectively, whichmeans the reflection phaseφr

can precisely ‘wind’ around the cylinder for one time (Fig. S7 in Sup-
plementary Information, Sec. V). Since the starting and terminal points
are coincident, the permitted winding numbers are quantized on the
cylinder, while the winding direction determines the sign of topolo-
gical charges. Similarly, +1 and −1 charges emerge near the points C
(f 0 = 288:51 THz, kρ0=k0 =0:75) andD (f 0 = 287:62 THz, kρ0=k0 =0:69)
for the TM wave, as shown in Fig. 3g. Noteworthy, there are two dif-
ferent properties discussed within the framework of reflection phases:
quantity of φr with blue-red color bar in Fig. 3a illustrates the classifi-
cation of bandgaps (ENG or MNG), while variation of φr with rainbow
color bar in Fig. 3f, g illustrates the existence of singularities. Near
the singularity, the phase changes dramatically. At θ= 52o

(kρ0=k0 =0:79), Heaviside-like phase jumps occur near 291.6 THz
for the TE modes and 288.8 THz for the TM modes, as is shown
in Fig. 3h. In fact, such jumps are quite sensitive to environmental
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Fig. 3 | BilateralDSSs indoubleWNRs. aPhase diagramsφr of the PC [(CGD)22B]20
for the TE wave. b, c When kρ=k0 =0:4 and kρ=k0 =0:8, the reflection phases φAg

for the silver layer E (red), φPC for the PC (blue) together with their sum φAg +φPC

(magenta) are illustrated on the cylinders, and related reflections RPC (green)
together with RAg+PC (brown) are illustrated in the insets. The boundary of
φr =πð�πÞ and the center ofφr =0 are highlighted by black andwhite dotted lines,
respectively. The points satisfied φAg +φPC =0 are marked by cyan stars.

d, e Reflection spectra and f, g phase diagrams φr of the hyper-crystal
E[(CGD)22B]20 for TE and TM waves. The surface states support four singularities
near the degenerate points: A and C with + 1 topological charge, together with B
and D with −1 topological charge. h For θ= 52o, phase jumps for TE and TM waves
emerge respectively near 291.6 THz and 288.8 THz, respectively. i Phase variations
illustrated by a joint 2D colormap in an expansion space φTE

r � φTM
r .
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disturbances, such as the external refractive indexes33,48, molecule
attachments49,50, and temperature51, which lays a solid foundation for
sensors with ultrahigh sensitivities. However, the presence of singu-
larities mainly depends on the TM component (zero points of the
complex reflection ratio ρ= rTM=rTE) in most of the previous schemes,
while the TE component contribution (pole points) is negligible.
Inheriting the decoupled properties from multi-quasiparticles, differ-
ent evolutions for two polarizations determine that we can review the
sensing scheme in expansion spaceφTE

r � φTM
r . Here we employ a joint

2D colormap to reveal the properties of this dualmode in Fig. 3i, which
are expected to support a highly sensitive interferometric sensing
scheme with a unique dual mode (Supplementary Information,
Section VII).

On the other hand, it can be predicted that when two singularities
with different topological charges merge in the momentum space, the
total charge will become zero due to charge conservation. Here such a
phenomenon isobserved in the spaceof complex frequency f = f r + if i.
Out of completeness, we take the TMpolarization as an example. Fig. 4
shows the complex frequency as the solution of the reflection-zeros,
and f r (f i) represents the real (imaginary) part of the solution. For
N = 20, the intersections between the dispersion and the axis of f i =0,
which symbolize pure real excitation frequencies of the surface states,
aremarked by purple and blue circles near the points kρ=k0 =0:75 and
kρ=k0 =0:69, corresponding to the singularities C and D in Fig. 3g.
When increasing the number of the unit cell (N =200), the leakages of
radiation reduce, and the singularity pair merges near the degenerate
point kρ=k0 =0:73 of the WNR (marked by green stars), which forms
the quasi-BIC. Besides, the quality factor Q= f 0=Δf is another impor-
tant evidence to judge singularities,where f 0 is the resonant frequency
andΔf is the full width at half maximum (FWHM). Exactly, peaks of the
quality factor appear near the position of singularities as shown in the
inset of Fig. 4, which implies most energy is localized in the composite
structure. Analogous conclusions can be obtained for the TE mode at
the samepoint. Each above singularity pair comes from the samenodal
line (marked by green stars) corresponding to the ultimate quasi-BIC.
Similar situations appear in the structures of isolated WNLSs and
DNLSs, respectively, which may give rise to a flexibly controllable BIC
(Supplementary Information, Section V). Therefore, DSSs become an
intriguing bridge between Weyl semimetals and BICs. Worth

mentioning, we notice a recent work discusses BICs spawned from the
Dirac point in the PC slab52. They find “the eigenstates can bemixed to
any ratio to produce any amplitudes of diffraction”, including the BIC,
whichmay provide a different perspective to the BICs originated from
decoupled multi-quasiparticles, and reveal a universal relevance
between the nodal physics and the singularity physics.

Discussion
As a summary, we establish a 1D PC platform to realize manipulations
of one kind of Weyl quasiparticles (double WNRs) with the properties
of BICs both dynamically and topologically. Based on fourDOFs, phase
transitions of translation (from isolated WNLSs to quasi-DNLSs and
DNLSs) and rotation (from type-I to critical type-III and type-II WNLSs)
are realized by flexibly modulating the FE of graphene and the thick-
nesses of component layers, respectively. In particular, when such a
structure is truncated by a metal film, extra DSSs pinned by the nodal
lines can support degenerate quasi-BICswith two pseudospins. Tuning
the absorption losses and radiation leakages, each BIC can divide into
two reflection-phase singularities with opposite topological charges.
With flexible and stable phase jumps, the approaching singularities
supported by degenerate BICs may improve the traditional sensing
schemes. This work opens an unexplored avenue to bridging BICs and
WNRs via hyper-crystal, giving a promising way for applications on
topological photonics.

Methods
Hamiltonian models
Tomanipulate theWeyl quasiparticles in the energy-momentum space
flexibly, we introduce four modulation DOFs Δ, ϕ, q1 and q2 into the
general model of a single WNR H = ðqa � q1Þσz + ðqb � q2Þσx . For
Fig. 1a–f, the effective Hamiltonian can be given by

H =Δσ0 + ðqa � q1Þξ +
qb � q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2ϕÞ

p σx , ð5Þ

where ξ = tanð2ϕÞσ0 + secð2ϕÞσz . σiði=0, x, y, zÞ denotes the Pauli
matrix. Furthermore, we can take the form of direct sum to describe
decoupled multi-quasiparticles. Take double decoupled WNRs for
different pseudospins α and β as an example, the general Hamiltonian,
corresponding to Fig. 1g–i, can be given by

HII =H
α
I ðΔα ,ϕα , qα1 , q

α
2 Þ � Hβ

I ðΔβ,ϕβ, qβ1 ,q
β
2Þ= τ0 � fX + Y g+ τz � fM +Ng,

ð6Þ

where X =a + σ0 +b
+ σz , Y = c+ σx , M =a�σ0 + b

�σz , and N = c�σx .

In addition, a± = ½Δα ±Δβ + δqα tanð2ϕαÞ± δqβ tanð2ϕβÞ�=2, b± =

½δqα secð2ϕαÞ± δqβ secð2ϕβÞ�=2, and c± =
qb�qα2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2ϕα Þ

p ±
qb�qβ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2ϕβÞ

p . Note

that τi and σi (i =0, x, y, z) represent the Paulimatrix for the band index
and pseudospin index, respectively.

Data availability
The data generated in this study have been deposited in Figshare
database under the following accession code https://doi.org/10.6084/
m9.figshare.25294858.

Code availability
The code that supports the plots within this paper can be found in
Figshare database under the following accession code https://doi.org/
10.6084/m9.figshare.25294858.
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