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The manifold of the fundamental domain of the Brillouin zone is always 

considered to be a torus. However, under the synthetic gauge field, the Brillouin 

manifold can be modified by the projective symmetries, resulting in 

unprecedented topological properties. Here, we realize a real-projective-plane 

hybrid-order topological insulator in a phononic crystal by introducing the 𝒁𝟐 

gauge field. Such insulator hosts two momentum-space non-symmorphic 

reflection symmetries, which change the Brillouin manifold from a torus to a real 

projective plane. These symmetries can simultaneously lead to Klein-bottle and 

quadrupole topologies in different bulk gaps. The non-symmorphic reflection 

symmetries on Brillouin real projective plane, edge states of Klein-bottle 

insulator, and corner states of quadrupole insulator are observed. These results 

evidence the hybrid-order topology on Brillouin manifold beyond the torus, and 

enrich the topological physics.  
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Symmetry plays a key role in the classification of topological matter [1-3]. In the 

presence of gauge field, the algebraic structures of crystal symmetries can be 

projectively enriched and generate the so-called projective symmetries, opening up 

new avenues for topological physics [4,5]. A case in point is that the 𝜋 gauge flux 

can change the commute relation for reflection symmetries to the anti-commute one, 

forming the projective reflection symmetries and leading to the multipole insulator 

[6,7]. Among them, the quadrupole insulator is the two-dimensional second-order 

topological phase, and featured with the zero-dimensional corner states [8]. Recently, 

a unified discussion about the projective symmetry algebra based on 𝑍" gauge field 

(0 and 𝜋 flux over the lattices) in the two dimensions has been constructed [9]. 

Under a 𝑍" gauge field, the projective translation symmetry can give rise to the 

Möbius topological insulator [10,11], the projective mirror symmetry leads to mirror 

Chern insulator [12-14], and the projective PT symmetry can switch the spinless and 

spinful topological phases [15-18]. 

Interestingly, the 𝑍" gauge field can modify the manifold of the fundamental 

domain of the Brillouin zone (BZ), giving rise to unprecedented topological 

phenomena. The Brillouin manifold is usually known as a torus. In the presence of 𝑍" 

gauge field, the real-space reflection symmetry can be projectively represented, which 

generates the momentum-space non-symmorphic (MSNS) reflection symmetry that 

performs glide reflection in momentum space [19]. In two dimensions, a single MSNS 

refection symmetry can change the Brillouin manifold from a torus to a Klein bottle, 

and give rise to the Klein-bottle insulator (KBI), which possesses the first-order 

topology described by 𝑍" invariant and hosts a pair of edge states with a nonlocal 

twist [20]. Abundant topologies on Brillouin Klein bottle are further discovered 

[21-25], including the first order and higher order. Very recently, it is proposed that a 

pair of MSNS reflection symmetries can reduce the Brillouin manifold from a torus to 

a real projective plane, and give rise to the second-order topological phase [26,27]. 

Experimental exploration of the intriguing topology on Brillouin real projective plane 

beyond the traditional paradigm is therefore necessary. 

Here, we realize an acoustic real-projective-plane hybrid-order topological 
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insulator (HOTI), which hosts a KBI phase with first-order topology and a quadrupole 

insulator (QI) phase with second-order topology in two bulk gaps. Owning to the 

macroscopic scale, phononic crystal (PC) for acoustic waves is a versatile platform to 

explore the abundant topological physics [28,29]. The synthetic 𝑍" gauge field can 

be achieved by accurately designing the positive and negative couplings in the PC 

[30-33]. We first illustrate the MSNS reflection symmetries and the ensuing Brillouin 

real projective plane and topological phase diagram in the PC. We then observe the 

bulk properties on Brillouin real projective plane, KBI edge states, and QI corner 

states in a practical PC sample. The experimental results, in agreement with the 

theoretical ones, evidence the hybrid-order topology on Brillouin real projective 

plane. 

Corresponding to the unit cell of lattice model shown in Fig. 1a, the unit cell of 

designed PC contains four same acoustic resonant cavities with the height ℎ =

30	mm and width 𝑟 = 15	mm, as illustrated in Fig. 1b. The lattice constant 𝑎 =

110.62	mm. The intra-cell tubes with size 𝑙 = 3	mm and inter-cell tubes with sizes 

𝑙# = 4	mm  and 𝑙$ = 5.5	mm  are constructed as the intra-cell and inter-cell 

couplings, which are at a distance of 10	mm to the top or bottom surfaces of cavities. 

The red and blue tubes act as the negative and positive couplings with 𝑑% = 7	mm 

and 𝑑" = 8	mm, as discussed in Supplementary S-I. With the cavities viewed as the 

lattice sites and the tubes acted as the couplings, the PC can be well mapped by the 

tight-binding model (Supplementary S-I). The Bloch Hamiltonian on the basis of the 

sublattices 1-4 can be written as 

𝐻7𝑘# , 𝑘$: = 𝜆&(Γ&% + Γ%') + 𝜆#(cos𝑘#Γ'% + sin𝑘#Γ'") 

+𝜆$7cos𝑘$Γ%& + sin𝑘$Γ"&:,                     (1) 

where Γ() = 𝜏(⨂𝜎) , 𝜏&  (𝜎& ) is the 2 × 2  identity matrix, 𝜏(  and 𝜎(  with 𝑖 =

1, 2, 3 are Pauli matrices for the degrees of freedom within a unit cell. The lattice 

constant is set to unity, 𝜆& is the intra-cell coupling, 𝜆# and 𝜆$  are the inter-cell 

couplings along the 𝑥 and 𝑦 directions, respectively.  

The PC possesses a pair of MSNS reflection symmetries 𝑀#
* = G𝑀# = Γ'% and 
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𝑀$
* = Γ%&, where 𝑀# represents the normal reflection in the 𝑥 direction and G =

Γ'&  is the gauge transformation. 𝑀#
*  and 𝑀$

*  satisfy the anti-commute relation 

N𝑀#
*, 𝑀$

*O = 0. In momentum space, we have 

𝑀$
*𝐻7𝑘# , 𝑘$:7𝑀$

*:+% = 𝐻7𝑘# + 𝜋,−𝑘$:,                 (2) 

𝑀#
*𝐻7𝑘# , 𝑘$:7𝑀#

*:+% = 𝐻7−𝑘# , 𝑘$ + 𝜋:.                 (3) 

To visualize these two symmetries, we illustrate the processes of the symmetric 

transformation. As shown in the left panel of Fig. 1c, for 𝑀$
* symmetry, the unit cell 

is reflected in the 𝑦 direction, then recovered by transforming 𝑘# into 𝑘# + 𝜋. For 

𝑀#
* symmetry, the unit cell is reflected in the 𝑥 direction, and needed to apply a 

gauge transformation G by assigning a sign of +1 or −1 to the basis at each site, 

finally recovered by transforming 𝑘$ to 𝑘$ + 𝜋, as illustrated in the right panel of 

Fig. 1c. 

The MSNS reflection symmetries 𝑀#
* and 𝑀$

* reduce the BZ of PC to form a 

real projected plane manifold, which will act on the bulk dispersions shown in Figs. 

1d and 1e. The first BZ is divided into 16 regions, and each region with the same 

color can be linked by the 𝑀#
*, 𝑀$

* or 𝑀#
*𝑀$

* symmetry, as shown in Fig. 1e. The 

central region of the BZ ([−𝜋/2, 𝜋/2] × [−𝜋/2, 𝜋/2]) consists of four regions 

marked by different colors, which contains the full information of the first BZ. Thus, 

we can define a reduced BZ of the central region as the fundamental domain of the 

first BZ. Interestingly, the boundaries of such reduced BZ are oppositely oriented via 

𝑀#
* and 𝑀$

* symmetries, as shown by the red and blue arrows in Fig. 1e, and glued 

together to form a real projective plane manifold [34]. As a concrete example, we 

extract the iso-frequency contours of bulk dispersion at 5.5	kHz, as depicted by the 

black curves in Fig. 1e. All contours in the first BZ can be mapped from those in the 

real-projective-plane BZ. Under the 𝑀$
* (𝑀#

*) symmetry, A (B) point is transformed 

into D (C) point on the iso-frequency contours. 
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The MSNS reflection symmetries 𝑀#
* and 𝑀$

* can give rise to hybrid-order 

topology on Brillouin real projective plane. As shown in Fig. 1d, the four bulk bands 

can have three bulk gaps, in which the lower and upper gaps are the gaps of KBI and 

the middle gap is the gap of QI. The KBI possesses the first-order topology described 

by 𝑍" invariants 𝑤# and 𝑤$, while the QI is characterized by corner charge 𝑄, 

that is defined by the quadrupole moment and edge polarizations, as discussed in 

detail in Supplementary S-II and S-III. For simplicity, we focus on the topological 

properties of the lower and middle gaps. Figure 1f shows the topological phase 

diagram determined by (𝑤# , 𝑤$; 𝑄,), in which 𝑤# and 𝑤$ are calculated in the first 

band and 𝑄, is for the lowest two bands. There exist four topological phases in the 

𝑙#-𝑙$ plane. Phases with (1,0; 0) and (0,1; 0) are the first-order topological phases 

with zero corner charge, while those with (1,0; 0.5) and (0,1; 0.5) are hybrid-order 

topological phases with nonzero first-order and second-order topological invariants 

simultaneously. The white line is the phase boundary of KBI with bulk gap closure, 

and the gray line is that of QI with edge gap closure, as shown in Supplementary S-IV.  

We now experimentally reveal the MSNS reflection symmetries and Brillouin 

real projective plane in the PC. Figure 2a shows the PC sample fabricated by 3D 

printing technology with 7𝑙# , 𝑙$: = (4	mm, 5.5	mm) , corresponding to the 

parameters labeled as the red star in Fig. 1f. The positive and negative hopping terms 

are realized by the coupling waveguides with different configurations. We calculate 

the Wannier bands 𝑣$(𝑘#) and 𝑣#(𝑘$) of the first bulk band by using its eigenfield, 

as shown in Fig. 2b. As 𝑘# (𝑘$) varies from −𝜋/𝑎 to 0, the Wannier band 𝑣$(𝑘#) 

(𝑣#(𝑘$)) passes through 0.5 with odd (even) times, which indicates the nontrivial 

(trivial) 𝑍" invariant 𝑤# = 1 (𝑤$ = 0) in the 𝑥 (𝑦) direction (Supplementary S-II). 

We also calculate the Wannier sector polarization 𝑃$
-! and 𝑃#

-" of the lowest two 

bands, as shown in Fig. 2c, and obtain nonzero quadrupole moment 𝑞#$ =

2𝑃$
-!𝑃#

-" = 0.5. The corner charge 𝑄,  can be calculated as 𝑄, = 𝑝#. + 𝑝$. − 𝑞#$ , 

where 𝑝#. = 0.5 and 𝑝$. = 0.5 are edge polarizations (Supplementary S-III), leading 
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to 𝑄, = 0.5. So this PC is a HOTI with 7𝑤# , 𝑤$; 𝑄,: = (1,0; 0.5). Figure 2d plots 

the calculated (white lines) and measured (color map) bulk dispersions along the 

Г-M-X line. The calculated and measured iso-frequency contours at 5.5	kHz are 

displayed in Fig. 2e, denoting the existence of special MSNS reflection symmetry and 

ensuing real projective plane in momentum space. The measured and calculated 

iso-frequency contours at different frequencies are further shown in Supplementary 

S-V. The measured bulk dispersions are obtained by Fourier transforming the 

measured field, where the source is placed at the center of the PC sample. Therefore, 

the designed PC is a real-projected-plane HOTI.  

According to the bulk-boundary correspondence, the real-projected-plane HOTI 

supports a pair of edge states with a nonlocal twist in the KBI gap. A PC ribbon is 

built to investigate the edge states along 𝑥 (𝑦) direction, which has a periodic 

boundary condition in the 𝑥  (𝑦) direction, and finite-size length in the 𝑦  (𝑥 ) 

direction. Figures 3a and 3b show the calculated projected dispersions along 𝑥 and 𝑦 

directions, respectively. It can be seen that the edge bands (colored lines) in the KBI 

gap only emerge in the 𝑥 direction, correspondence to the 𝑍" invariants (𝑤# , 𝑤$) =

(1,0). The color denotes the localization of edge state 𝜓. at the bottom (yellow) and 

top (blue) boundaries, which is defined as 𝑑 = ∑ |𝜓.(𝑥)|"#∈0 − ∑ |𝜓.(𝑥)|"#∈1  and 𝑏 

(𝑡) represents the outermost two unit cells of the bottom (top) boundary. Due to the 

𝑀$
* symmetry, the eigenfrequency at 𝑘# is the same as that at 𝑘# + 𝜋/𝑎, and their 

eigenfields are connected by the 𝑦 directional reflection symmetry, behaving as a 

nonlocal twist. For example, the frequency at 𝑆% (𝑘# = −𝜋/𝑎) is equal to that at 𝑆" 

(𝑘# = 0). The eigenfield distributions of edge modes at 𝑆% and 𝑆" are shown in Fig. 

3c, where the color maps represent the acoustic pressures normalized by their 

maximum value. One can see that the fields of 𝑆% and 𝑆" are localized at top and 

bottom boundaries respectively, which satisfy 𝑀$
*𝜓2# = 𝜓2$ and verify the existence 

of MSNS reflection symmetry.  

In experiments, we first place a source at the center of the top boundary and 

measure the response pressure of cavities in this boundary. After Fourier transforming 
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the measured data, the projected dispersion is obtained and shown in the upper panel 

of Fig. 3d. Notably, only the edge modes near 𝑘# = ±𝜋/𝑎 are excited, revealing that 

the fields of these modes are mainly localized on the top boundary like 𝑆%. The edge 

modes near 𝑘# = 0 are excited by the source at the bottom boundary, revealing the 

localization of these edge modes on the bottom boundary like 𝑆", as shown in the 

lower panel of Fig. 3d. These results are consistent with the calculated ones in Fig. 3a, 

together revealing the edge states with a nonlocal twist.  

Finally, we demonstrate the existence of corner states in the QI gap of the 

real-projected-plane HOTI, attributed to 𝑄, = 0.5 . The square-shaped PC with 

13 × 13 unit cells is depicted in Fig. 2a, and its schematic is displayed in Fig. 4a. 

Figure 4b shows the eigenfrequency spectrum, where the corner states (red dots) 

emerge in the QI gap. Inset displays four corner modes near the frequency 5.65	kHz. 

In the experiment, the source excites at each cavity and the response of acoustic 

pressure is measured at the same cavity. Figure 4c shows the measured pressure field 

distribution at frequency 5.65	kHz of corner states. One can see that the measured 

field is localized at four corners of the PC sample. We further measure the broadband 

response of acoustic pressures at corner (𝐶%), edge (𝐶"), and bulk (𝐶'), as shown in 

Fig. 4d, where the data are normalized by the maximum value. A huge resonant peak 

of pressure at corner is observed in the band gap, which is much larger than that at the 

edge and bulk, denoting the excellent ability of corner states in binding the acoustic 

pressure. 

In conclusion, we have realized a real-projected-plane HOTI in a PC, where the 

BZ is reduced by a pair of MSNS reflection symmetries to form a real projective 

plane. The real-projected-plane HOTI simultaneously hosts that a KBI phase features 

a pair of edge states with a nonlocal twist in the lower gap and a QI phase 

characterizes nontrivial corner states in the middle gap. Our work represents an 

experimental extension of band topology on Brillouin manifold from a torus to a real 

projected plane. With the flexibility in achieving the synthetic gauge field, our system 

may serve as a basis for further exploration of nontrivial topological properties on 

three-dimensional Brillouin manifold beyond real projected plane. 
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Methods 

Details for simulation. In this work, all the simulations are performed by the 

commercial COMSOL Multiphysics solver package, where the speed of sound is set 

as 341	m/s and the density of air is 1.3	kg/m'. To calculate the Wannier bands in 

Fig. 2b, Wannier sector polarizations in Fig. 2c, and edge polarizations in Fig. S4, the 

eigenvectors are constructed by the normalized eigenfields which are extracted at the 

center of each cavity with the position of ℎ/4. 

Details for experiment. The experimental sample is fabricated by 3D printing 

technology with a resin thickness of 2	mm. Due to the large impedance mismatch 

with air, the resin boundaries can be regarded as the hard walls. The sample consists 

of 13 × 13 unit cells with sizes of around 1.4	m × 1.4	m. This big sample is divided 

into four parts, which are fabricated separately and assembled together, as shown in 

Fig. 2a. A hole with diameter 11.2	mm is perforated on the top side of cavities for 

excitation and detection. The holes are sealed with plugs when not in use. In 

experiments, the source with diameter 6.3	mm is placed at the top of cavities and the 

response signal is collected by the microphone, which is placed at the ℎ/4 of cavities. 

Measured data in the frequency range 5	kHz - 6.5	kHz  with frequency step 

0.001	kHz is processed by the network analyzer (E5061B 5	Hz-500	MHz). The bulk 

band dispersions (Figs. 2d and 2e) and projected band dispersion (Fig. 3d) are 

obtained by Fourier transforming the corresponding measured fields, where a source 

is placed at the center of bulk and top/bottom boundary, respectively. For the 

measurement of corner states in Fig. 4c, the source and microphone are placed at the 

same cavity 𝑖, obtaining pressure response 𝑃((𝑓). To reduce the influence of varying 

excitation efficiencies in different cavities, response pressure in Fig. 4d is normalized 

by the sum of intensity over all frequencies 𝑃((𝑓)/∑ 𝑃((𝑓)3 . 
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Fig. 1 | Acoustic real-projective-plane HOTI protected by the MSNS reflection 

symmetries 𝑴𝒙
𝒈 and 𝑴𝒚

𝒈. a, b Unit cells of tight-binding model and PC. Red (blue) 

tubes represent negative (positive) couplings. c Schematics of MSNS reflection 

symmetries. d Bulk dispersion of PC with KBI and QI gaps. e Iso-frequency contours 

(black curves) of PC at 5.5	kHz in the first BZ. The reduced BZ (enclosed by the red 

and blue arrows) can be regarded as a real projective plane. f Phase diagram 

determined by 𝑍" invariants (𝑤# , 𝑤$) of KBI gap and corner charge 𝑄, of QI gap in 

the 𝑙#-𝑙$ plane. The white (gray) line denotes the phase boundary of KBI (QI). The 

red star represents the hybrid-order topological phase with specific parameters used in 

b and d. 
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Fig. 2 | Observation of bulk properties of acoustic real-projective-plane HOTI. a 

Photograph of PC sample. The enlarged sample shows the detailed configuration of 

unit cell enclosed by green lines. b Calculated Wannier bands 𝑣$ and 𝑣# of the first 

band of PC, which indicates the 𝑍"  invariants 7𝑤# , 𝑤$: = (1, 0) . c Calculated 

Wannier sector polarizations 𝑃$
-! and 𝑃#

-" of the lowest two bands of PC, revealing 

the quantized quadrupole moment. d Measured (color map) and calculated (white 

lines) dispersions along the Г-X-M-Г lines. e Measured and calculated iso-frequency 

contours at 5.5	kHz. 
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Fig. 3 | Observation of edge states in the KBI gap. a Calculated projected 

dispersions along the 𝑥 direction. The colored lines represent a pair of edge states 

with a nonlocal twist in the KBI gap, and the color denotes the degree of localization 

at the top (blue) and bottom (yellow) boundaries. b Calculated projected dispersion 

along the 𝑦  direction. There is no edge state in the KBI gap. c Eigenfield 

distributions of edge modes at 𝑆% (𝑘# = −𝜋/𝑎) and 𝑆" (𝑘# = 0) points marked in a, 

which are connected by 𝑀$
* symmetry. d Measured edge dispersions (color maps) 

excited at the centers of the top and bottom boundaries, respectively. The black lines 

are the calculated edge dispersions in a. 
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Fig. 4 | Observation of corner states in the QI gap. a Schematic of square-shaped 

PC sample. b Eigenfrequency spectrum. The four red dots denote the corner modes in 

the QI gap. Inset: enlarged region for corner states. c Measured pressure field 

distribution at 5.65	kHz, demonstrating the existence of corner states. d Measured 

response spectra at the positions 𝐶% , 𝐶" , and 𝐶' , which are normalized by the 

maximum value.  


