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S-I. Analytical derivation of the flat band based on coupled mode theory 

formalism 

The 4×4 Hermitian Hamiltonian H of the metagratings in the main text is given by: 
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We define: 
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Here, we focus on the dispersion region in the vicinity of the second-order  point, 

where the first-order diffractive coupling process is dominant between the forward 

and backwards waveguide modes. The eigenvalue  ( )xk  can be calculated by 

solving  det . 0H I   : 
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where 
1,2 1,2 1,2 xv k     . Equation (S2) is rewritten in the form 
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solve the eigenvalues. We obtain: 
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The eigenvalue  ( )xk  of eq. (S3) can then be calculated from: 
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Four eigenvalues at 0xk   are given by: 
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where 

      
      

2 2 2

1 1 2 1 2 1 2 1 2 1 2

2 2 2

2 1 2 1 2 1 2 1 2 1 2

4 2 1 cos

4 2 1 cos

V A A A A V

V A A A A V

   

   

           

           

.  

(S8) 

The curvature (i.e., second derivative of the dispersion characteristic) based on eq. (S6) 

is given by: 
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xd dk    and 
2 2 =0xd dk  must be satisfied at 0xk   for a flat band. Thus, a 

flat band (i.e., zero curvature) is obtained when 
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The flat band is obtained when high orders of derivatives vanish. The third derivative 

of the dispersion characteristic at 0xk   is given by: 
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We can then easily verify that the infinite derivative of the dispersion characteristic 

vanishes at 0xk   (  0 1,n n

xd dk n n Z    ). Thus, the condition of flat-band 

generation is   2

1 2 1 2cos 2 1V A A    . If we neglect the diffractive coupling 

between the evanescent fields of one grating and the waveguide modes of the other 

grating, we assume that 1 2= =0  . The previous condition becomes: 
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S-Ⅱ. Robustness of the high conversion efficiency of THG under a Gaussian 

beam incident at different angles 

The flat-band-based 
THG  is robust, reaching approximately two orders of 

magnitude higher than the dispersive counterpart at a large operating NA, reaching 
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approximately 0.65 and 0.43 for normal and oblique incidence (with the maximum 

incident angle reaching 20°), respectively, as shown in the main text. This contrast is 

robust under a Gaussian beam with NA = 0.43 incident at different angles, as shown 

in Figure S1(a). The flat-band-based 
THG  will be 1.5 to 3 orders of magnitude 

higher with θG = 0, 5, 10, 15, and 20 as shown in Figure S1(a). The 
THG  

spectrum of the flat-band metagratings as a function of the fundamental frequency is 

shown in Figure S1(b) when the Gaussian beam (the divergence angle θd = 20and 

the intensity of the axial component 20.25 GW cmGI  ) is normally incident. The 

highest 
THG  reaches approximately 0.16 at the fundamental resonant frequency. 

 

Figure S1 (a) The order of THG enhancement log10(THG), defined as the difference 

between the logarithmic efficiency between the flat-band metagrating and its 

dispersive counterpart. (b) The THG conversion efficiency spectrum of the flat-band 

metagratings as a function of the fundamental frequency when the Gaussian beam is 

normally incident. d is the waist radius of the Gaussian beam, and the THG 

conversion efficiencies are all normalized by the total thickness of the structure. 

 

S-ⅡI. Robustness of the flat-band-based higher nonlinear conversion efficiency 

within the same operating angular range when possible fabrication deviation is 

introduced 

We calculated the total THG conversion efficiencies of the flat- and 
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dispersive-band-based metagratings with simultaneous incidence of five plane waves 

(θ = 0, 5, 10, 15, and 20) in the main text. The total nonlinear conversion 

efficiency assisted by the flat band [the band covering a 20-degree operating angle in 

the black box of Figure S2(a)] is an order of magnitude higher than that of the 

dispersive band, as shown in Figure S2(d) [the same figure as Figure 4(c) in the main 

text]. To prove the robustness of the proposed efforts, which includes the flat band 

obtained and the flat-band-based higher nonlinear conversion efficiency compared 

with the dispersive-band-based counterpart, we discuss the influences of two possible 

typical fabrication deviations and provide robustness information. In particular, we 

increase the parameter F by 0.02 and S by 0.04, corresponding to comb widths in the 

metagrating (w1 and w2) approximately 10 nm wider and a layer misalignment  of 

approximately 20 nm more. The TE2 band is still flat in the vicinity of the  point, as 

shown in Figure S2(b). The black box in Figure S2(b) covers a 20-degree operating 

angle, where the band is almost flat. The total nonlinear conversion efficiency assisted 

by the flat band [Figure S2(b)] is still an order of magnitude higher than that of the 

dispersive band, as shown in Figure S2(e), although the highest total resonant 

frequency will shift. We also decrease the parameter F by 0.02 and S by 0.04, 

corresponding to comb widths in the metagrating (w1 and w2) narrowed by 

approximately 10 nm and a layer misalignment  approximately 20 nm less. The TE2 

band is still flat in the vicinity of the  point, as shown in Figure S2(c), with the black 

box in Figure S2(c) covering a 20-degree operating angle. The total nonlinear 

conversion efficiency assisted by this flat band is still an order of magnitude higher 

than that of the dispersive band, as shown in Figure S2(f), although the highest total 

nonlinear conversion efficiency assisted by the flat band [Figure S2(c)] is lower than 

that of Figure S2(d) and (e), with a shift in the total resonant frequency. 
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Figure S2 (a)-(c) Calculated three TE bands along the kx axis with the TE2 band flat 

in the vicinity of the  point. (d)-(f) Total THG spectra of the flat- [corresponding to 

(a)-(c)] and dispersive-band metagratings as a function of the harmonic frequency 

with simultaneous incidence of five plane waves (θ = 0, 5, 10, 15, and 20), as 

depicted in the inset of (d). The black boxes in (a)-(c) all cover a 20-degree operating 

angle, where bands are almost flat. The structural parameters of (a) and (d) have been 

provided in the main text. 

 

S-IV. The comparison of THG phases of the flat band and the dispersive band 

within wide operating angles 

We excite several typical resonances on this flat band and investigate their 

corresponding nonlinear field distributions within wide operating angles. Figure 

S3(a)-(c) show comparative field distributions E
TH 

y  (phases) of the flat-band-based 

THG with incident angles of 6, 13, and 20at resonant frequencies, which 

guarantees constructive superposition in addition to good spectral overlap. The good 

spectral overlap of the dispersive-band-based THG conversion efficiency spectra is 

guaranteed when the pumped incident angles range from -5 to 5. We excite several 

typical nonlinear fields within wide operating angles at a resonant frequency of θ = 5 

(149.79 THz) on this dispersive band to guarantee spectral overlap. Figure S3(d)-(f) 
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show field distributions E
TH 

y  (phases) of the dispersive-band-based THG with incident 

angles of 5, 12.5, and 20, where field enhancement is successively reduced by an 

order of magnitude from left to right. Although the good spectral overlap at 149.79 

THz is guaranteed, and constructive superposition is not guaranteed. Thus, the total 

nonlinear conversion efficiency assisted by the dispersive band is lower than that of 

the flat band. 

 

Figure S3 (a)-(c) Harmonic electric field distributions (y component) E
TH 

y at resonant 

frequencies in the flat band under incident angles of 6, 13, and 20(left to 

right). (d)-(f) Harmonic electric field distributions (y component) E
TH 

y at the resonant 

frequency of θ = 5 (149.79 THz) on the dispersive band under incident angles of 

5, 12.5, and 20(left to right). Both the flat-band and dispersive-band 

metagratings are excited bya TE plane wave with intensityI0 = 0.047 GW/cm
2
. 

 


