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I. Dispersion relations of the 1st-order sinusoidal PTMMs  

In the vicinity of the second stopband (the  point) and under the diffraction limit, 

the one dimensional (1D) wave equation: 
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is solved by the approximated electric field distributions ( , )yE x z  (TE-like modes) 

and the dielectric constant ( , )x z of the 1st-order sinusoidal PTMMs (structure in Fig. 

2) [1], given by 
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and 
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where 0
1
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PT

V
z z   After substituting equations (S2) and (S3) into equation 

(S1) and collecting the items with the same exponents ( 0 1)inKxe n  ， , we get three 

coupled equations about the guided waves and the radiating wave: 
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Here, we used 0k K   .   slowly varying approximation of ( ) xik x
A x Ae


   and

( ) xik x
B x Be


   was employed in order to drop the second order derivative terms 

2 2( ) /A x x    and 
2 2( ) /B x x   . Equation (S4) can be solved in terms of Green’s 

function ( , ')G z z , given by 



  0 2

1 1( , ) ( ) ( , ') ( ') ( ) ( ') ( ) ( ') 'radE x z K G z z z A x z B x z dz  


 



    . (S7) 

In the vicinity of the second stopband center 0, ( ) iKxz e  is the solution of equation 

(S1) for a homogeneous waveguide, satisfying 
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By substituting equations (S7) and (S8) into equations (S4)(S6) and employing the 

normalization condition ( ) ( ) 1z z dz 






 , we get the coupling equations of the two 

counter-propagating guided waves: 
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in which, we used 
2 2

0
0

2

 
  


 and the coupling coefficients are given by 
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Solving equation (S9), we obtain the dispersion relations:  
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The complex bands (Riemann surface) are obtained by fitting simulation data via 

equation (S13), as shown in Fig. S1. We get the Dirac cone dispersions when V0 = 1: 
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Note that the bands are purely real regardless of the wavevector, thus achieving full-k 

BICs.   coincidence of EP and BIC takes place at the  point.  



Similarly, in the vicinity of the third stopband (the  point, with 0th-, 1st-order 

diffraction), the approximated electric fields consist of two counter-propagating guided 

waves and two radiating waves: 
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Then the resemble dispersion relations can be obtained: 
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in which, the coefficients can be derived in a similar way, with the same scaling laws 

of V0 but not exactly the same expressions with equations (S10-12). We get the Dirac 

cone dispersions when V0 = 1 as well: 
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Note that one obtains full-k BICs and coincidence of EPs and BICs at the X point. In 

summary, we achieve full-k BICs regardless of radiation channels and EP-BIC 

coincidence at high-symmetry k-points. 

 

Fig. S1. Riemann surfaces at the 2nd stopband ( point) as a function of V0 and kx 

corresponding to the real (a) and imaginary parts (b) of the eigenvalues. Dots, 

simulations; surfaces, theory.  



II. Dispersion relations of the D-PTMM 

In the vicinity of the third stopband (point), the electric field distributions are 

approximated as:  
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Similarly, we expand the dielectric function ( , )x y of the D-PTMM into Fourier 

series to the 3rd-order, and the non-zero items are given by (corresponding to structures 

in Fig. 3) 
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 fter substituting equations (S18) and (S19) into the 1D Helmholtz equation of 

equation (S1) and collecting the items with the same exponent, we get four coupled 

equations about the two guided waves and the two radiating waves. Similarly, the 

radiating waves are eliminated by the Green’s function '( , ')G y y   and 
3

2( )
i Kx

z e  is 

used as the solution of equation (S1) for a homogeneous waveguide. We finally get the 

coupled equations of the two counter-propagating guided waves around the X point in 

the diffraction region (0, 1): 
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in which, 
2 2

0
0

2

 
  


 was used as well. The coupling coefficients are 

expressed as 
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Solving equation (S20), we obtain the dispersion relations of the D-PTMM:  

 

2

1 3

0

0

3 1

2 2
( )

 

  
    

  
   

x

x

k K ih h

k
Kh

.  (S24) 

We fit the simulation results in Fig. 3a by equation (S24) with parameters 0h , 1h , and 

+3h . The good agreements between simulations and theoretic fittings consolidate that 

our 3rd-order CFC approximation is sufficient. The bands transform into the Dirac 

dispersions around the X point when there only exists 1st order complex Fourier 

component ( +3 0h  ):   
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where we obtain full-k BICs and the EP-BIC coincident at the high-symmetry k-points 

(
1

=
2

xk K ). 

III. Q factors diverging to infinity 

To show the divergence of the simulated Q factors to infinity in the full k-space, 

we plot the Q factors in the diffraction region 0 and (0, 1) of the sinusoidal PTMMs 

with only 1st-order CFC (Fig. S2) and with additional high-order CFCs (Fig. S3), 

respectively. The calculations are accomplished with finite-element-method (FEM) 

offered by COMSOL Multiphysics. In contrast to general optical FEM simulations of 

dielectric materials that require the maximum mesh size smaller than /6 or /8 ( isthe 

effective wavelength inside the dielectric materials), our simulations of the sinusoidal 

PTMMs require much finer mesh size because the smoothness of the dielectric 

functions is necessary for the fill-k BICs. The Q factors clearly show a divergent 

behavior to infinity with finer mesh either at general k-points [Fig. S2(a)] or high-



symmetry k-points [Fig. S2(b)], which are in good agreements with the theories. The 

line shapes of Q factors [Fig. S2(a)] are analogous to those of PTMMs with additional 

higher order complex Fourier components [Figs. S2(c) and S2(d)], indicating that finite 

Q factor dispersions are only affected and limited by the higher order complex Fourier 

components introduced by the finite size of meshes in our simulations. Similarly, the 

full-k-space Q factors of the PTMMs in the diffraction region (0, 1) are diverging to 

infinity with finer meshes as well, as shown in Fig. S3. 

 

Fig. S2. Divergence of simulated Q factors and finite-element effects. (a) Simulated 

Q factors of band 1 and band 2 in Fig. 2 with various mesh fineness. The mesh factor 

(MF) is defined as the ratio of the period a to the maximum mesh size in the simulations. 

(b) Q factors of band 1 at the  point, clearly showing a divergence to infinity. (c) and 

(d) Q factors of band 1 and band 2 corresponding to PTMMs with additional high-order 

CFCs 3   (c) and 5   (d) , showing a divergence to infinity with smaller high-order 

CFCs. The similar behavior with that of (a) indicates that the finite Q factors are merely 

limited by the finite size of meshes which introduce high-order CFCs.   
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Fig. S3. Divergence of Q factors to infinity with finer meshes in the vicinity of the 

3rd stopband. (a) Q factors of band 2 at the (0, 1) diffraction region in the vicinity of 

the third stopband, diverging with finer MFs. (b) Q factors of band 2 at the X point with 

finer meshes, clearly showing a divergence to infinity. 

IV. Manipulation of the absolute lasing amplitudes 

In this section we show that the Q actors and lasing amplitudes can be arbitrarily 

enlarged by tuning the PT perturbation depth of the PTMMs.  t the resonance, the near-

field enhancement |E/E0| is associated with the radiative Q factors (intrinsic loss is 

neglected) [2]: 
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where E0 is the amplitude of the incident plane-wave and effV  is the effective mode 

volume. We treat the PT modulations as perturbations since the modulation depths are 

relatively small compared to the permittivity of the homogeneous slab. Therefore, the 

relative near field distributions are considered invariant and the diffraction power is 

proportional to the near-field enhancement: 
2

0/ /R T E E . effV  is invariant as well 

with the PT perturbations because the spatial localizations of the resonant modes are 

considered unchanged. Combining equations (S22) and (S23), the coefficients h1 and 

h+3 show linear and cubic dependence of the overall PT modulation depth PT  , 

respectively. Therefore, the Q factors at high-symmetry k-points are clearly inverse 

quadratic to PT  since the eigenstate loss is known from equation (S24): 
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Combining with equation (S26), we then get the scaling law of the lasing power at the 

resonances of quasi-EP-BICs: 

 2/ PTR T Q    . (S28) 

The diffraction lasing strengths are predicted to be linear with the Q factors and be 

inverse quadratic to the overall PT modulation depth PT . The characteristic inverse 

quadratic dependence is typical for quasi-BICs spawned from symmetry-protected 

BICs [3], indicating that the high-order CFCs of the D-PTMMs introduce full-k quasi-

BICs. 

To further consolidate our theory, we illustrate the simulated lasing strengths with 

different overall modulation depths PT  of the D-PTMMs in Figs. S4(a)S4(e). One 

can clearly see that the line shapes are invariant but show amplified amplitudes at the 

resonances with larger PT modulation depths. Fig. S4(f) summarizes the scaling laws 

of the resonant diffraction strengths and the corresponding Q factors supported by the 

D-PTMMs, showing good agreements with the theory. Therefore, the absolute 

informational lasing amplitudes can be engineered by tuning the PT perturbation depth 

of the PTMMs.  



 

Fig. S4. Absolute lasing amplitudes engineering of the PTMMs. (a)e), Diffraction 

strengths of the D-PTMMs with the overall modulation depth PT = 0.2, 0.4, 0.6, 0.8, 

and 1.0, respectively. The illustrated D-PTMMs are in 0th, 1st diffraction order with 

an oblique incidence ( /xk ap ). (f) Scaling laws of the diffraction lasing strengths at 

the resonances of quasi-EP-BICs ( 2/ PTR T Q    ), which are proportional to the Q 

factors and inverse quadratic to the PT modulation depth PT . Dots: simulation data; 

lines: theory. 

V. Comprehensive spatial information lasing by configuring CFCs of 

permittivity 

We demonstrate the ability to design arbitrary amplitudes and phases of different lasing 

Fourier components by illustrating representative PTMM configurations. Figure S5(a) 

shows the relative phase engineered by a PTMM with 2nd- and +3rd-order CFCs. As 

a proof of concept, we illustrate the spatial information lasing with three independent 

lasing channels ( 0

radE , 1

radE , 2

radE ) operating in the vicinity of the 4th stopband with 

incident in-plane momentum 2 /xk ap . The 0th-order lasing wave 0

radE  is 

invariant. 1

radE  and 2

radE  can cover the phases of 0 to 2p and 0 to 4prespectively, 

when we tune the phase of the 2nd-order CFCs 
2  from 0 to 2p. In addition to phase 

manipulation of informational lasing, we can realize complex modulation of lasing 
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amplitudes and phases based on the correspondence between the CFCs 
n  and lasing 

fields m

radE , as shown in Fig. S5(b).  

Furthermore, we demonstrate the characteristic lasing information entropy and 

lasing patterns from S = 0.10 to S = 0.53 and their corresponding PT modulations in 

Fig. S6. Generally, resulting from the modulation of unidirectional Bragg couplings 

inside the high-Q nanolaser cavity, we can obtain arbitrary spatial information by 

configuring the CFCs of the PTMMs, without additional optical components. 

 
Fig. S5. (a) Phase and (b) amplitude engineering of multiple lasing Fourier components. 

The total lasing fields are completely controllable since the complex amplitude of each 

Fourier component can be manipulated. Shading areas in (c) denote various PTMM 

configurations. 

 
Fig. S6. Lasing information entropies, corresponding lasing patterns and CFCs. 

The CFCs configurations are: (a) 
1 30.15,  0.05    , (b) 

2 30.10,  0.25     , 

and (c) 
1 2 41.00,  0.40,  0.20        , with 0 fixed at 4. The principles of full-k 

BICs are compatible with numerous CFC configurations, which leads to on-demand 

informational lasing. 
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VI. Mode (k-mode) competition analysis by laser rate equations 

The mode competition between FGM and BGM is trivial except for in the vicinity of 

high-symmetry k-points (degenerate points, EP-BIC points), because their free 

spectrum range (FSR) at general k-points is generally larger than the full width at half 

maximum (FWHM) of the gain spectrum (single-mode lasing can be achieved by gain 

dispersion as modes are dispersive). Therefore, we discuss mode competitions between 

(1) a pair of counter-propagating guided modes in the vicinity of degenerate points; (2) 

modes belong to one band with close but different k and eigenfrequencies, by rate 

equation analysis. We argue that both single-mode and single-k-mode lasing can be 

achieved.  

(1) Counter-propagating guided mode competitions 

Considering the linear and nonlinear couplings, the coupled rate equations for the two 

counter-propagating guided modes E1(t) and E2(t) read [46] 

 
𝑑𝐸1

𝑑𝑡
= 𝜅(1 + 𝑖𝛼)[𝑁(1 − 𝑠|𝐸1|2 − 𝑐|𝐸2|2) − 1]𝐸1 − 𝜅1𝐸2, (S29) 

 
𝑑𝐸2

𝑑𝑡
= 𝜅(1 + 𝑖𝛼)[𝑁(1 − 𝑠|𝐸2|2 − 𝑐|𝐸1|2) − 1]𝐸2 − 𝜅2𝐸1, (S30) 

𝑑𝑁

𝑑𝑡
= 𝛾[𝜇 − 𝑁 − 𝑁(1 − 𝑠|𝐸1|2 − 𝑐|𝐸2|2)|𝐸1|2 − 𝑁((1 − 𝑠|𝐸2|2 − 𝑐|𝐸1|2)|𝐸2|2], (S31) 

where E1(t) and E2(t) are the slowly-varying normalized amplitudes of forward and 

backward propagating guide modes, N is the carrier density, is the field decay rate,  

is the decay rate of the carrier population, is the linewidth enhancement factor,  is 

the normalized injection current ( = 0 at transparency,  ≈ 1 at the lasing threshold), 

1,2 denotes the linear mode couplings arising from the Bragg scattering of the PT-

modulated grating, c and s are the nonlinear couplings of guided modes resulting from 

gain saturation on their own and by each other, respectively. 

The linear mode coupling coefficients 1,2 are determined by the Bragg scattering 

of the CFCs of the PTMMs, which is approximately zero in the absence of the grating 

modulation, and is symmetric (asymmetric) when the grating is index gratings (PT-

modulated gratings). 

The nonlinear coupling of guided modes arises from gain saturation. The self-

saturation and inter-mode saturation through spectral hole burning and carrier heating 

effects are described by the s and c saturation parameters [4]. Carrier density pulsation 

effects is neglected since the guided modes have a spatial period much smaller than the 



carrier diffusion length [5]. 

We numerically solved the rate equations by the standard 4th-order Runge-Kutta 

method, and extract the steady-state electric field amplitudes to plot the bifurcation 

diagrams.  s an illustrative system, we use the parameters of the resemble 

semiconductor PT-symmetric micro-ring laser [4]:  = 100 ns1,  = 0.2 ns1,  = 3.5, 

and c = 2s = 0.01. 

To show the mode selection of the PTMMs operating close to the EPs, we chose 

various values of linear mode couplings 1,2 and plotted the bifurcation diagram of the 

equations (maximum and minimum of the amplitude |E1,2(t)| versus the normalized 

injection current ). Without gratings, 1,2 typically take a small and equal value, 1 = 

2 = d + ic arising from spurious backscattering in the semiconductor waveguide [4,5]. 

The linear coupling is completely asymmetric at EPs, i.e., 2/1 = 0 for the sinusoidal 

PTMMs. One gets non-vanishing small 2/1 in the vicinity of EPs with unbalanced 

real and imaginary modulations. 

 s shown in Fig. S7(a), the bifurcation diagram with 1 = 2 = d + ic shows 

different dynamics, namely, symmetric continuous-wave (CW) bidirectional emission 

(region I), alternating mode oscillations (region II), and unidirectional bistable CW 

emission (region III), in consistence with previous works [4]. The BGM E1 and the 

FGM E2 share the same lasing features with symmetric couplings (1 = 2).  s the 

sinusoidal PT-modulation is gradually approached (2/1 →  0), the BGM E1 is 

dominating over the FGM E2, with larger and larger amplitudes than E2, as shown in 

Figs. S7(b) and S7(c). The region of alternating oscillations shrinks from Fig. S7(b) to 

S7(c), indicating the mode E1 plays a more dominant role in lasing process as well.  t 

the EP-BIC condition 2/1 = 0, the FGM E2 is fully suppressed and the laser operates 

unidirectionally in a stable CW regime, as shown in Fig. S7(d). The laser rate equation 

analysis clearly indicates that operation of the full-k BICs lasing in the vicinity of EPs 

is robust and stable to achieve single-mode laser oscillation. 



 

Fig. S7. Bifurcation diagrams of the semiconductor laser rate equations, depicting the 

maximum and minimum of the amplitude |E1,2(t)| versus the normalized injection 

current  = 1 at the threshold, for different values of linear mode couplings 1 and 

2. (a) 1 = 2 = d + ic, c = 0.44 ns−1, 𝑑 = 0.0327 ns−1, corresponding to weak 

backscattering and absence of the grating modulations. (b) Highly unbalanced index 

and loss/gain gratings (1 = 5𝑖 ns−1, 2/1=0.5). (c) Slightly unbalanced real and 

imaginary modulation gratings (1 = 5i ns
−1, 2/1=1/15). (d) EP-BIC condition of 

sinusoidal PT-modulated gratings (1 = 5i ns
−1, 2/1 = 0). 

(2) k-mode competitions 

Different k-modes resemble various longitudinal modes of quasi-periodic Fabry-Perot 

(FP) cavity with large enough size. The couplings among the longitudinal modes should 

abbey conservation of both energy and momentum. The longitudinal modes can be 

directly coupled by four-wave mixing in semiconductor FP lasers [7], but the carrier 

density grating effect is often neglected when one considers mode competitions close 

to the lasing threshold [6,8,9]. Therefore, each one of the k-modes becomes an 
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independent oscillator, and the inter-coupling terms in the rate equation are dropped. 

Similarly, the rate equations for the two close k-modes Ek1(t) and Ek1(t) with plan-

wave seeding injection read [10,11] 

 
𝑑𝐸𝑘1

𝑑𝑡
= 𝜅(1 + 𝑖𝛼)[𝑁(1 − 𝑠|𝐸𝑘1|2 − 𝑐|𝐸2|2) − 1]𝐸𝑘1 − 𝜅ext1𝐸ext, (S32) 

 
𝑑𝐸𝑘2

𝑑𝑡
= 𝜅(1 + 𝑖𝛼)[𝑁(1 − 𝑠|𝐸𝑘2|2 − 𝑐|𝐸𝑘1|2) − 1]𝐸𝑘2 − 𝜅ext2𝐸ext, (S33) 

𝑑𝑁

𝑑𝑡
= 𝛾[𝜇 − 𝑁 − 𝑁(1 − 𝑠|𝐸𝑘1|2 − 𝑐|𝐸𝑘2|2)|𝐸𝑘1|2 − 𝑁((1 − 𝑠|𝐸𝑘2|2 − 𝑐|𝐸𝑘1|2)|𝐸𝑘2|2],(S34) 

where Ek1(t) and Ek2(t) are the slowly-varying normalized amplitudes of two close k-

modes 𝐸𝑘1(𝑡)𝜑(𝑥)𝑒−𝑖(𝜔1𝑡−𝑘1𝑥)  and 𝐸𝑘2(𝑡)𝜑(𝑥)𝑒−𝑖(𝜔2𝑡−𝑘2𝑥)  belong to one band, 

Eext(t) is the injected amplitude of plane-wave seeding injection, and ext1,2 are the 

couplings between injected seeding Eext and mode Ek1,k2. 

The plane-wave seeding injection 𝐸𝑒𝑥𝑡(𝑡)𝑒−𝑖(𝜔1𝑡−𝑘𝑥𝑥−𝑘𝑦𝑦)  shares the same 

frequency 1 with mode Ek1 and can be unidirectionally scattered to Ek1 by the Bragg 

process: k1 = kxG (G is the reciprocal lattice vector), while couplings between Eext 

and Ek2 do not satisfy energy and momentum conservation. The external couplings ext1 

and ext2 show great difference since the Ek1 mode has larger in-plane momentum 

overlapping and spectral overlapping, i.e., ext2ext1 → 0. 

To show the robust k-mode selection by the plane-wave seeding injection, we plot 

the bifurcation diagram with various coupling difference ext2ext1.  s shown in Fig. 

S8(a), the two k-modes show identical behaviors with symmetric continuous-wave 

(CW) bidirectional emission (region I) and unidirectional bistable CW emission (region 

III), manifesting severe mode competitions with symmetric seeding couplings. 

However, mode Ek1 dominates over mode Ek2 with slightly external coupling difference 

(ext2ext1 = 0.99), as shown in Fig. S8(b). The mode Ek2 is further suppressed in lasing 

when ext2ext1 = 0.5 [Fig. S8(c)]. Single-k-mode lasing of Ek1 is achieved and mode Ek2 

is fully suppressed at completely asymmetric external coupling condition (ext2ext1 = 

0), as shown in Fig. S8(d). This is intuitive since the mode Ek1 starts lasing from seeding 

photons while the mode Ek1 from quantum noise. Therefore, robust single-k-mode 

lasing can be achieved with a plan-wave seeding injection.    



 

Fig. S8. Bifurcation diagrams of the semiconductor laser rate equations, depicting the 

maximum and minimum of the amplitude |Ek1,2(t)| versus the normalized injection 

current  = 1 at the threshold, for different values of external couplings ext1 and 

ext2. The amplitude of seeding injection Eext is set as 0.01. (a) ext1 = ext2 = 0.5𝑖 ns−1, 

corresponding to symmetric external seeding injection. (b) Slightly asymmetric 

external couplings (ext1 = 0.5𝑖 ns−1, ext2/ext2 = 0.99). (c) Highly asymmetric external 

couplings (ext1 = 0.5𝑖 ns−1, ext2/ext2 = 0.5). (d) Completely asymmetric external 

couplings (ext1 = 0.5𝑖 ns−1, ext2/ext2 = 0). Other simulation parameters are the same as 

Fig. S7. 

VII. Feasible protocols and error analysis 

 s illustrated in Fig. S9, the specific optical constant profile can be discretized and 

realized by an index-contrast grating according to the effective medium theory (see 

results in Fig. 3), no necessity for a continuous control of complex Fourier components 

(CFCs). We noticed that resemble CFC manipulations have been realized by some 
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research groups. For example, Feng et al. have reported the experiments with similar 

control depth and precision of CFCs (Fig. 2b in Ref. [12]), including both gain and loss 

manipulation using silicon-based metamaterial. Wong et al. realized lasing and anti-

lasing PT-symmetry-modulated waveguide (first paragraph on page 797 and Fig. 1 in 

Ref. [13]). Besides the optical waveband region, CFCs modulation can also be realized 

in long-wave band such as microwave with more accuracy and flexibility. We believe 

the required CFCs are experimentally attainable according to corresponding reports. 

But the fabrication of such metamaterial is beyond the current fabricating technique in 

our group. Recently, we are trying to upgrade our laboratory to reach the required 

fabrication conditions. 

The main challenge of the specific optical constant profiles can be summarized as 

three aspects: (1) The modulation depth/range compared to average optical constants 

( , /r i ave  );  (2) The maximum spatial gradient of optical constants that determines 

high-order CFCs ( ,r i ); (3) The robustness of system parameters on the information 

entropy. Table S1 compared conditions (1) and (2) between our work and pioneering 

experimental schemes involving CFC modulations, showing that the required CFCs are 

basically attainable. Our CFC configurations are comparable with various recent works 

as well [16]. 

 s the system gain can be adjusted to match the loss by altering the pump power, 

we examine the errors in the calculated information entropy  caused by out-of-plane 

parameters (thickness) and in-plane parameters (imbalance of real/imaginary 

modulation), as depicted in Fig. S10. 

 

Fig. S9. Schematic of optical constant profile discretization. The permittivity profile 

can be discretized and further realized by index-contrast gratings according to the 

effective medium theory. a is the modulation period.  
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Table S1. CFC parameter comparison between full-k-BICs and pioneering experimental publications 

 

Fig. S10. Robustness of the calculated information entropy, in respect of (a) relative 

thickness difference /t t  , (b) relative imbalance of real/imaginary modulation 

( ) /r i ave     . Match of gain and loss can be easily achieved by altering the pump 

power. The dot represents the true value of  without parameter errors (0), while the 

error bar represents the deviation of  with parameter errors. 

VIII. Full-k BICs versus lasing threshold modes 

We would like to identify the proposed full-k BICs from the lasing threshold modes 

reported by Ref. [17]. Full-k-BICs of band 2 (band 3) shows perfect destructive 

interference of leaky waves while BICs of band 3 (band 2) originates from balancing 

near-field gain and losses of radiative waves when the in-plane wavevector  

0 /xk ap    ( / 2 /xa k ap p   ), as shown in Figs. S11(a) and S11(b). The 

eigenstates with infinite Q factor as a result of balanced gain and loss were labeled as 

lasing threshold modes [17].  ll bands show destructive interference of radiation waves 

at the high-symmetric k-points. We further calculated the far-field radiative power Prad 
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rad rad

S
P dS  S n , where Srad is the radiative time-averaged Poynting vector) and the 

near-field absorption power Pabs (
21

Im( )
8

abs
V

P dV 
p

  E , integrating the volume 

of the PTMMs V) of band 2 and band 3 [Figs. S11(c) and S11(d), respectively]. The 

full-k BICs of band 2 (band 3) have both zero radiations and absorptions while band 3 

(band 2) manifests non-zero Pabs with Pabs = Prad when 0 /xk ap   

( / 2 /xa k ap p   ).  ll bands show zero radiations and absorptions at the high-

symmetric k-points. Therefore, one of the counter-propagating guided modes is the 

lasing threshold mode while the other one mode is the general BIC at the general k-

points, and all modes are general BICs at the high-symmetric k-points.  

 

Fig. S11. (a) Band dispersions of -1st-order PTMM manifesting full-k-space BICs and 

(b) the corresponding eigenstate fields. (c) and (d) The far-field radiative power Prad 

and the near-field absorption power Pabs of full-k-BIC band 2 and band 3, respectively. 

The negative absorption means net gain. 
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