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Nonlinear metasurfaces and photonic crystals provide a significant way to generate and manipulate nonlinear signals owing to
the resonance- and symmetry-based light-matter interactions supported by the artificial structures. However, the nonlinear
conversion efficiency is generally limited by the angular dispersion of optical resonances especially in nonparaxial photonics.
Here, we propose a metagrating realizing a quasi-bound-state in the continuum in a flat band to dramatically improve the third
harmonic generation (THG) efficiency. A superior operating angular range is achieved based on the interlayer and intralayer
couplings, which are introduced by breaking the mirror symmetry of the metagrating. We demonstrate the relation of angular
dispersion between the nonlinear and linear responses at different incident angles. We also elucidate the mechanism of these off-
axis flat-band-based nonlinear conversions through different mode decomposition. Our scheme provides a robust and analytical
way for nonparaxial nonlinear generation and paves the way for further applications such as wide-angle nonlinear information
transmission and enhanced nonlinear generation under tight focusing.
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1 Introduction

Nonlinear optics studies the results of the modified optical
properties when intense light passes through an optical
medium, such as two-photon absorption [1,2], four-wave
mixing [3,4], and harmonics generation [5-7]. Conventional
nonlinear generation enhancement is nonresonant and
achieved by increasing the distance of light-matter interac-

tion with strict phase-matching conditions [8,9], which in-
evitably leads to bulky devices. With the advantage of strong
resonant local-field enhancements and flexible manipulation
of harmonic waves, subwavelength metasurfaces [10-14] can
drastically improve the nonlinear conversion efficiency with
significantly relaxed phase-matching requirements. Re-
cently, all-dielectric metasurfaces harnessing Mie resonances
have attracted much attention because of their large local
enhancement, convenient fabrication, and low intrinsic los-
ses. In addition, based on the concept of bound states in the
continuum (BICs) [15], radiativeQ factors can be engineered

© Science China Press 2024 phys.scichina.com link.springer.com

SCIENCE CHINA
Physics, Mechanics & Astronomy

*Corresponding authors (Wenwei Liu, email: wliu@nankai.edu.cn; Hua Cheng, email:
hcheng@nankai.edu.cn; Shuqi Chen, email: schen@nankai.edu.cn)

https://doi.org/10.1007/s11433-023-2299-9
https://doi.org/10.1007/s11433-023-2299-9
phys.scichina.com
link.springer.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11433-023-2299-9&amp;domain=pdf&amp;date_stamp=2024-02-26


to infinity to further improve the local-field enhancements
and nonlinear conversion efficiency. To effectively excite the
BIC mode in free space, BICs are usually transformed into
quasi-BICs [16-18], which have controllable interactions
with the radiative continuum. Recent studies have demon-
strated applications of quasi-BICs in efficient nonlinear
processes, such as harmonic generation [19,20], lasing [21-
23], and optical frequency mixing [24-26].
Based on the energy band dispersion, different k compo-

nents of the nonparaxial incidence will cause shifts in the
resonant frequencies, leading to angular dispersion [27]. To
address this issue, researchers have developed various ap-
proaches to eliminate the angular dispersion in the linear
regime, such as engineering a flat band in momentum space
[28-30], designing local optical responses for each incident
angle in real space [31], or exploiting nonlocal modes to
collectively modify the scattering characteristics [32].
Nevertheless, the nonlinear conversion efficiency is still
limited due to angular dispersion. Recently, Huang et al. [28]
theoretically proposed a moiré quasi-BIC flat band through
interlayer coupling and opened up the possibility of im-
proving the second-harmonic generation (SHG) efficiency
with angle-limited nonparaxial wave excitation. However,
there are still some issues that need to be clarified in the
nonlinear regime: for example, can a structure with weak
angular dispersion also generate a nonlinear signal with si-
milar dispersion? The mechanism of the off-axis nonlinearity
also needs to be further elucidated, and the superposition of
harmonic signals excited by plane-wave components with
different angles is also ambiguous.
In this work, we obtain a quasi-BIC flat band by interlayer

and intralayer diffractive coupling in a quasi-BIC metagrat-
ing with broken mirror symmetry. We show that the angular
dispersion of the nonlinear output signal cannot be directly
obtained by that of the linear regime under plane-wave in-
cidence with different angles. The mechanism of these off-
axis flat-band-based nonlinear conversions is analyzed
through different mode decompositions. The enhanced
nonlinear conversion efficiency is realized by spectral
overlap and constructive superposition. Compared with the
dispersive-band-based nonlinear conversion efficiency, the
flat-band-based higher counterpart is robust under normal
and large-numerical-aperture (NA) oblique incidence. These
results promote research on angular dispersion in the non-
linear regime and can easily provide extended applications
involving different wide-angle components in informational
photonic systems.

2 Design of the quasi-BIC flat band

We start with flat-band engineering exploiting a double-layer
“fishbone” metagrating that consists of a sawtooth grating

and a comb waveguide grating, as shown in Figure 1(a) and
(b), with the imaginary dotted line facilitating modeling and
theoretical analysis. Our doublet fishbone structure may be
fabricated using the e-beam lithography method of all-di-
electric metasurface doublet (MD), which is developed and
implemented by vertically concatenating two arrays of na-
noresonators on either side of the substrate, as reported in ref.
[33]. The layer misalignment is denoted as Sa, where 2a is
the period and S is the dimensionless layer misalignment. In
general, the energy band in such resonant gratings is dis-
persive (Figure 1(c)), leading to a low nonlinear conversion
efficiency under wide-angle incidence. By tuning the dif-
fraction phase shift e±iφ with φ = 2πS, which is essential for
the dispersive evolution of energy bands (Supporting Mate-
rial I), a flat band is generated, as depicted in Figure 1(d). To
describe the physical mechanism of flat band generation, we
introduce an analytical Hamiltonian model [29] corre-
sponding to the “fishbone” metagratings. Based on the for-
ward (a1+, a2+) and backward (a1−, a2−) fundamental zero-
order waveguide modes of the double-layer gratings (Figure
1(a)), the 4×4 Hamiltonian H is given by
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We consider the first-order diffractive coupling processes

between forward and backward waveguide modes since they
are the most effective terms in the vicinity of the second-
order Γ point [34,35]. U1,2 are the intralayer diffractive
coupling rates between the forward and backward waves in
each layer. V represents the interlayer coupling between
waves of the two gratings in the same direction. The factors

1,2 are indirect diffractive couplings between the evanescent
fields of one grating and the waveguide modes of the other
grating. The coefficient e±iφ (φ = 2πS) represents the first-
order diffraction phase shift resulting from the layer mis-
alignment Sa. ω1,2 and v1,2 are the energies and group velo-
cities of propagating guided waves. The detailed derivation
of the eigenvalue problem is provided in the supplementary
material (Supporting Material I). Since the first-order dif-
fraction phase shift at kx = 0 should meet the flat-band
condition k n n Zd / d = 0( 1, )n

x
n , we obtain

V
U Ucos = 2 1. (2)

2

1 2

Therefore, the evolution from the dispersive band to the
flat band (e.g., the TE2 band from Figure 1(c) to (d)) can be
achieved by tuning the layer misalignment.
The high Q factor of the three modes leads to high local
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field enhancements, strengthening nonlinear light-matter
interactions inside the meta-atoms. Specifically, the TE2
band is engineered into a flat band since its electric field is
more localized in the dielectric media compared with other
modes (Figure 1(e)), in favor of higher nonlinear conversion
efficiency. However, the three modes are all waveguide
modes with an infinite quality (Q) factor below the light cone
and cannot be excited with the perturbation factor = 0. To
transform the bound modes into quasi-BICs through band
folding, we introduce a double-period perturbation. The
perturbative factor << 1 offers weak couplings to the ra-
diative waves (the scaling law of Q for quasi-BICs in this
system satisfiesQ 2 [18]) and a small perturbation of the
Hamiltonian. In the simulation of the quasi-BIC flat band,
the metagrating is composed of crystalline silicon (c-Si,

= 2.79 × 10 m V( )
Si

3 18 2 2), and the relative permittivity of
c-Si is modeled by an N-pole Lorentz function in the ei-
genvalue solver (COMSOL) to address the dispersion of the
optical constant [36]. The wavelength range of the dispersion
of the permittivity in our simulations is from 317 to 3000 nm
[36], which contains the fundamental wavelength and third
harmonic wavelength.

3 Results and discussions

We excite several typical resonances on this flat band and
investigate their corresponding nonlinear generations within

wide operating angles. The total THG emission can be es-
timated by the nonlinear scattering theory [37,38]. The
fundamental electric field distributions |EFF| with incident
angles of 6º, 13º, and 20º at resonant frequencies are shown
in Figure 2(a)-(c), and the harmonic counterparts Ey

TH are
shown in Figure 2(d)-(f). Both the fundamental field dis-
tributions and amplitudes among different angles are analo-
gous, as shown in Figure 2(a)-(c), which suggests the weak
angular dispersion of linear processes. In remarkable con-
trast, the nonlinear near-field amplitude of θ =13º is higher
than that of 6º and 20º with comparative field distributions
(phases), as shown in Figure 2(d)-(f).
To clarify the distinct dispersion behavior between linear

and nonlinear processes, we adopted the multipolar analysis
in linear and nonlinear regimes. The scattering power can be
expressed in terms of multipolar modes as refs. [39,40], in
which the predominant modes of electric dipole (ED) and
magnetic dipole (MD) are shown in Figure 2(g) and (h). For
the linear process, both the ED and MD modes distinctly
respond at the resonant frequency. The MD mode is excited
with a larger intensity than the ED mode in the whole linear
process, and its corresponding resonant intensity alters little
at four angles, as shown in Figure 2(g). This small variation
of the MDmodes corresponds to the weak angular dispersion
of the output signals in Figure 2(a)-(c). However, for the
nonlinear process, the MD mode is mainly excited with the
ED mode almost zero, as shown in Figure 2(h). This contrast
between the linear and nonlinear resonance is mainly af-
fected by the MD mode. In nonlinear processes, the MD
resonant intensity of θ = 15º is the highest, as shown in
Figure 2(h), demonstrating that weak angular dispersion in
linear processes cannot be achieved in the nonlinear regime
according to their different multipolar intensities, as shown
in Figure 2(g) and (h). Furthermore, the nonlinear MD re-
sonant intensities of θ = 6º, 13º, 20º correspond to their
nonlinear field enhancements (Figure 2(d)-(f)), showing the
maximum at θ = 13º.
To analyze the effects of different modes in the whole

process of nonparaxial flat-band-based nonlinear generation,
we introduce the quasinormal modes (QNM) method
[41,42], which expands the excited field by eigenstate modes
of nanoresonators [43,44]. Without loss of generality, we
apply the QNM theory to the case of θ = 15º (strongest
nonlinear signal), as shown in Figure 3(a). Third-harmonic
generation (THG) can be described via two coherent pro-
cesses. First, the resonator is excited by an external driving
field [Eb (k, r, ω), Hb (k, r, ω)] to generate a total field
distribution [Et (k, r, ω), Ht (k, r, ω)] at the fundamental
frequency (FF) ω. Second, the total FF field generates a local
nonlinear polarization P(3) (kx, y), acting as the source for the
THG. We consider several QNMs that cover the spectral
range from ω to 3ω. The normalized electric and magnetic

Figure 1 (Color online) (a) Schematic of the asymmetric “fishbone”
metagratings. Photons of a fundamental pump at ω are converted to pho-
tons at 3ω via THG. (b) Elementary cell of “fishbone” metagratings, di-
vided by an imaginary dotted line. The structure is in the background of air
with period 2a, thickness of the lower grating h, dimensionless layer
misalignment S, perturbation factor α, filling factor F, and thickness of the
central waveguide t. (c) Calculated three TE dispersive bands along the kx
axis. (d) Calculated three TE bands along the kx axis with the TE2 band flat
in the black box. (e) Eigenfield distributions (y component) Ey of three Γ
points (A-C) in (d). The structural parameters of the flat-band metagratings
are 2a = 1.05 μm, h = 0.61 μm, S = 0.23, α = 0.081, F = 0.595, and t =
52.5 nm.
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distributions of the m-th QNM are denoted by E r H r( ), ( )m m .
Importantly, the QNM fields must be normalized such that

E E H µ H r( / ) ( / ) d = 1m m m m [42]. The

total field inside the resonator at w can be reconstructed as:

( ) ( ) ( )
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m x

1 represents the excitation coefficient of the

m-th QNM at FF, with complex frequency m, E r H r( ), ( )m m

is the normalized electric and magnetic distributions of the
m-th QNM and is the permittivity ( )k ,x . For a
resonator with N-pole Lorentz permittivity, a classical and
well-documented expression is
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Here, ( )kb x is the background permittivity. The integral is
performed on the volume V, which defines the resonator in
the scattering field formulation.
The total field of eq. (4) generates a nonlinear polarization

in the grating:
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The total field ( )E k y, , 3t x at 3ω can also be expanded by
the QNMs:
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where the m-th QNM excitation coefficient at third harmonic
(TH) frequency can be expressed as:
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We show the frequency positions in the complex wave-

length plane (λm) of the typical QNMs (FF1-FF3 and TH1-
TH6) by calculating the excitation coefficients (eqs. (4) and
(7)) of QNMs in the vicinity of fundamental and third har-
monic frequencies, as shown in Figure 3(c). Their corre-
sponding field distributions are shown in Figure 3(d). Based
on eqs. (3) and (6), every QNM is a basis of the actual
excited field in the Hilbert space. The actual off-axis THG
excited field (Figure 3(b)) can be obtained by a linear
combination of typical TH QNMs in Figure 3(d). Generally,
all situations with an excitation source can be analyzed by
this QNM decomposition, focusing on correlative overlap
integrals of the excitation field and the QNM field, as de-
scribed in eqs. (4) and (7).
To further demonstrate the flat-band-based high nonlinear

conversion efficiency, we set the incident plane-wave angles
as 0º, 5º, 10º, 15º, and 20º, within the operating angular range
of the flat band. Figure 4(a) and (b) show the corresponding
five THG conversion efficiencies of the flat and dispersive-
band-based metagratings, respectively, where ηTHG = P3ω/Pω
(Pω=2aI0cosθ) contains all diffraction components, and two
THG conversion efficiencies of 0º are both 0.03. All con-
version efficiencies are close to 0.03 except for the case of
15º reaching 0.1, as shown in Figure 4(a). In contrast, the
THG conversion efficiency decreases rapidly to 8.9×10−5 as
the incident angle θ increases in Figure 4(b). Meanwhile, the
resonant frequencies of different incident angles are always
approximately 148.3 THz for flat-band excitation; never-
theless, the resonant frequency increases as the incident an-
gle θ increases for the dispersive band, as shown in Figure
4(a) and (b). We further calculated the total THG conversion
efficiencies of these two metagratings with the simultaneous
incidence of five plane waves, as depicted in the inset of
Figure 4(c). The total nonlinear conversion efficiency as-
sisted by the flat band is an order of magnitude higher than
that of the dispersive band, as shown in Figure 4(c), which is
robust with parametric deviation of the structures such as
wider/narrower comb widths and more/less layer misalign-
ment, which correspond to the common fabrication accuracy

Figure 2 (Color online) (a)-(c) Fundamental electric field distributions
|EFF| at resonant frequencies under incident angles of θ = 6º, 13º, and 20º
(left to right). (d)-(f) Harmonic electric field distributions (y component)
Ey

TH at resonant frequencies under incident angles of θ = 6º, 13º, and 20º
(left to right). (g), (h) Multipolar decompositions of the scattering power in
terms of ED (dotted lines) and MD (solid lines) under θ = 6º, 13º, 15º, and
20º in linear and nonlinear processes, respectively. The metagrating is
excited by a TE plane wave with intensity I0 = 0.047 GW/cm2.
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of fabrication of 10 and 20 nm (Supporting Material III),
demonstrating the flat-band-based constructive super-
position of the nonlinear conversion among different plane-
wave components. Although the THG conversion efficiency
of 15º incidence is much higher than that of the other angles,
the higher total THG conversion efficiency of the flat band in
Figure 4(c) results from the coherent superposition of the
nonlinear generation at every incident angle. The nonlinear
conversion efficiencies with and without 15º incidence are
comparable, as shown in Figure 4(d).
The nonlinear conversion efficiency can be significantly

enhanced since not only the good spectral overlap guaran-
teed by the total shift in the resonant wavelength smaller than
the full width at half maximum (FWHM) of the resonance
but also the constructive superposition guaranteed by com-
parative THG field distributions (phases) (Supporting Ma-
terial IV). We select the spectrum of 15º with the highest
THG conversion efficiency in Figure 4(a) and estimate its Q
factor through FWHM [45]. The good spectral overlap is
satisfied when the pumped incident angles of the THG
conversion efficiency spectra range from −20º to 20º (fun-
damental resonant frequencies are in the FWHM of 15º, Q =
1100.1), as shown in the yellow region in Figure 4(e). The
total THG efficiency can be improved by this good spectral
overlap of different incident components in addition to the
constructive superposition of comparable THG phases
among different plane-wave components (Supporting Ma-
terial IV). In contrast, good spectral overlap may only occur
among the THG conversion efficiencies from the resonant
frequency of θ = −5º to the resonant frequency of θ = 5º (Q =
983.59), as shown in the orange region in Figure 4(f), re-
gardless of the pumped incident angle for the dispersive-
band counterpart. The constructive superposition of com-
parable THG phases of the dispersive band from −20º to 20º
is ineffective (Supporting Material IV). Thus, the total

nonlinear conversion efficiency assisted by the dispersive
band is lower than that of the flat band.
The flat-band metagrating can be well applied to wave-

front control in practical applications, with output signal
intensities varying with different diffraction orders. For ex-
ample, more diffraction orders of ηTHG (R) (THG signal of
the reflection port) are generated as the incident angle θ
increases at the fundamental frequency of 148.3 THz, as
shown in Figure 5(a). This wavefront control can also be
demonstrated by calculating the difference in ηTHG (R)
[∆ηTHG (R)] at various incident angles and harmonic re-
sonant frequencies, as shown in Figure 5(b). We further
observe the THG far-field polarization distributions of two
points (θ = 7.5º and 15º) near the maximum value of ∆ηTHG
(R) in Figure 5(b) and mark them with five-pointed stars at
the same fundamental resonant frequency of 148.3 THz. The
diffraction orders of −1 and 1 dominate at θ = 7.5º and θ =
15º, respectively, as shown in Figure 5(c) and (d). The insets

Figure 3 (Color online) (a) Set of QNMs excited by the plane wave with
the incident angle θ = 15º and the intensity I0 = 0.047 GW/cm2. (b) The
harmonic field distribution |ETH| of θ = 15º at the resonant frequency. (c)
Eigenfrequency positions of QNMs near the TH and FF in the wavelength-
space complex plane. (d) Corresponding eigenfield distributions |E| of (c).
Every field in (d) is normalized by its maximum amplitude.

Figure 4 (Color online) (a), (b) The THG conversion efficiency (ηTHG)
spectra of the flat and dispersive-band metagratings as a function of the
harmonic frequency under different incident angles of 0º, 5º, 10º, 15º, and
20º. The excitation intensity is I0 = 0.047 GW/cm2 for both the flat-band
and dispersive-band metagratings. The ηTHG of θ = 0º in (a) and (b) are
comparable (0.03). (c) Total ηTHG spectra of the flat and dispersive-band
metagratings as a function of the harmonic frequency with the simultaneous
incidence of five plane waves, as depicted in the inset of (c). (d) Total ηTHG
spectra of flat-band-based nonlinear generation with and without 15º in-
cidence. (e) The operating angular range of 40º guarantees good spectral
overlap (yellow regime) for the flat-band metagratings. (f) The operating
angular range of 10º guarantees good spectral overlap (orange regime) for
dispersive-band metagratings. The structural parameters of the dispersive
bands are 2a = 1.05 μm, h = 0.63 μm, S = 0.3, α = 0.1, F = 0.57, and t = 52.5 nm.
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are their corresponding electric field distributions of the
periodic structure, obviously showing the plane waves of the
THG with different reflected angles θr, where θr can be
calculated by the grating equation of 2a(sinθr+sinθ) = qλ (q is
the diffraction order, and λ is the incident wavelength).
In particular, we use the Gaussian beam to verify the high

total THG conversion efficiency of flat-band-based non-
linear generation again, considering its high use in practical
applications. The Gaussian beam is incident at θG = 0º, 5º,
10º, 15º, and 20º for both quasi-BIC flat-band and dispersive-
band metagratings. The THG conversion efficiency of the
flat-band metagratings is higher than that of the dispersive
counterpart; in particular, log10(ηTHG) reaches approximately
two orders of magnitude higher at a large numerical-aperture
(NA) of approximately 0.65 for normal incidence, as shown
in Figure 5(e). This contrast between the flat and dispersive-
band metagratings will also exist for the oblique incidence in
Figure 5(f) with NA ranging from 0 to 0.43 (Supporting
Material II).

4 Conclusions

In conclusion, based on the intralayer and interlayer dif-
fractive couplings of the “fishbone” metagrating with the
mirror symmetry broken, we realized a quasi-BIC flat band
systematically investigated the corresponding off-axis non-
linear generation. We clarified that the angular dispersion of
the output signal in the linear regime cannot directly corre-
spond to that of the nonlinear regime under plane waves
being incident at different angles. We elucidated the me-
chanism of this off-axis flat-band-based nonlinear generation
through different mode decompositions. The flat-band-based
nonlinear conversion efficiency is higher than the dispersive
counterpart. This is robust under normal and oblique large-
NA incidence, which results from the good spectral overlap
of different plane-wave components and constructive su-
perposition of corresponding THG phases. This robustness
can enable predesigned structural beams consisting of dif-
ferent wide-angle components to effectively improve the
nonlinear conversion efficiency. This work paves the way for
not only deeper investigations of the angular dispersion
problem in the nonlinear regime but also applications in-
volving different wide-angle components, such as nonlinear
multichannel optical manipulation, nonlinear optical com-
munication, and large field-of-view nonlinear imaging.
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θG = 0º (e) and θG = 5º, 10º, 15º, 20º (f). The axial component of the
Gaussian beam is IG = 0.1 GW/cm2.

244212-6Y. Zang, et al. Sci. China-Phys. Mech. Astron. April (2024) Vol. 67 No. 4

https://www.sciengine.com/SCPMA/doi/10.1007/s11433-023-2299-9
https://www.sciengine.com/SCPMA/doi/10.1007/s11433-023-2299-9
http://phys.scichina.com
https://link.springer.com
https://doi.org/10.1103/PhysRevLett.121.083901
https://doi.org/10.1103/PhysRevLett.121.083901
https://doi.org/10.1002/adfm.201707175
https://doi.org/10.1021/acs.nanolett.1c02381
https://doi.org/10.1021/acs.nanolett.1c02381
https://doi.org/10.1103/PhysRevLett.127.033901
https://doi.org/10.1002/lpor.202100207
https://doi.org/10.1021/acs.nanolett.0c03290


7 G. Barbet, B. Qiang, Y. Jin, T. Wu, P. Genevet, Q. Wang, and Y. Luo,
Adv. Opt. Mater. 11, 2202786 (2023).

8 V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, Phys.
Rev. A 66, 043813 (2002).

9 M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V.
Boyer, Phys. Rev. A 88, 033845 (2013).

10 Z. Li, W. Liu, D. Ma, S. Yu, H. Cheng, D. Y. Choi, J. G. Tian, and S.
Chen, Phys. Rev. Appl. 17, 024008 (2022).

11 W. Liu, Z. Li, M. A. Ansari, H. Cheng, J. Tian, X. Chen, and S. Chen,
Adv. Mater. 35, 2208884 (2023).

12 D. N. Neshev, and A. E. Miroshnichenko, Nat. Photon. 17, 26 (2023).
13 T. Gu, H. J. Kim, C. R. Baleine, and J. Hu, Nat. Photon. 17, 48 (2023).
14 Y. Zhang, Z. Li, W. Liu, Z. Li, H. Cheng, J. Tian, and S. Chen, Opt.

Lett. 46, 3528 (2021).
15 L. Ni, Z. Wang, C. Peng, and Z. Li, Phys. Rev. B 94, 245148 (2016).
16 R. Chai, Q. Liu, W. Liu, Z. Li, H. Cheng, J. Tian, and S. Chen, ACS

Photon. 10, 2031 (2023).
17 R. Chai, W. Liu, Z. Li, H. Cheng, J. Tian, and S. Chen, Phys. Rev. B

104, 075149 (2021).
18 K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar,

Phys. Rev. Lett. 121, 193903 (2018).
19 S. Xiao, M. Qin, J. Duan, F. Wu, and T. Liu, Phys. Rev. B 105, 195440

(2022).
20 Z. Zheng, L. Xu, L. Huang, D. Smirnova, P. Hong, C. Ying, and M.

Rahmani, Phys. Rev. B 106, 125411 (2022).
21 C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G.

Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, Science 367, 1018
(2020).

22 M. S. Hwang, H. C. Lee, K. H. Kim, K. Y. Jeong, S. H. Kwon, K.
Koshelev, Y. Kivshar, and H. G. Park, Nat. Commun. 12, 4135 (2021).

23 X. Zhang, Y. Liu, J. Han, Y. Kivshar, and Q. Song, Science 377, 1215
(2022).

24 R. Camacho-Morales, L. Xu, H. Zhang, S. T. Ha, L. Krivitsky, A. I.
Kuznetsov, M. Rahmani, and D. Neshev, Nano Lett. 22, 6141 (2022).

25 G. Grinblat, ACS Photon. 8, 3406 (2021).
26 T. Liu, M. Qin, F. Wu, and S. Xiao, Phys. Rev. B 107, 075441 (2023).
27 Y. Liang, H. Lin, S. Lin, J. Wu, W. Li, F. Meng, Y. Yang, X. Huang, B.

Jia, and Y. Kivshar, Nano Lett. 21, 8917 (2021).
28 L. Huang, W. Zhang, and X. Zhang, Phys. Rev. Lett. 128, 253901

(2022).
29 H. S . Nguyen, F. Dubois, T. Deschamps, S. Cueff, A. Pardon, J. L.

Leclercq, C. Seassal, X. Letartre, and P. Viktorovitch, Phys. Rev. Lett.
120, 066102 (2018).

30 Y. Yang, C. Roques-Carmes, S. E. Kooi, H. Tang, J. Beroz, E. Mazur,
I. Kaminer, J. D. Joannopoulos, and M. Soljačić, Nature 613, 42
(2023).

31 S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A.
Faraon, Phys. Rev. X 7, 041056 (2017).

32 K. Shastri, and F. Monticone, Nat. Photon. 17, 36 (2023).
33 C. Zhou, W. B. Lee, C. S. Park, S. Gao, D. Y. Choi, and S. S. Lee,

Adv. Opt. Mater. 8, 2000645 (2020).
34 S. G. Lee, S. H. Kim, and C. S. Kee, Phys. Rev. Lett. 126, 013601

(2021).
35 Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, Phys. Rev. Lett. 113,

037401 (2014).
36 M. Garcia-Vergara, G. Demésy, and F. Zolla, Opt. Lett. 42, 1145

(2017).
37 K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin,

and X. Zhang, Nat. Mater 14, 379 (2015).
38 M. S. Nezami, D. Yoo, G. Hajisalem, S. H. Oh, and R. Gordon, ACS

Photon. 3, 1461 (2016).
39 S. Kruk, and Y. Kivshar, ACS Photon. 4, 2638 (2017).
40 Z. Huang, K. Luo, Z. Feng, Z. Zhang, Y. Li, W. Qiu, H. Guan, Y. Xu,

X. Li, and H. Lu, Sci. China-Phys. Mech. Astron. 66, 284211 (2023).
41 R. Colom, F. Binkowski, F. Betz, Y. Kivshar, and S. Burger, Phys.

Rev. Res. 4, 023189 (2022).
42 C. Gigli, T. Wu, G. Marino, A. Borne, G. Leo, and P. Lalanne, ACS

Photon. 7, 1197 (2020).
43 P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J. P. Hugonin, Laser

Photon. Rev. 12, 1700113 (2018).
44 Q. Zhou, P. Zhang, and X. W. Chen, Phys. Rev. Lett. 127, 267401

(2021).
45 Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J.

Manfra, and J. Kono, Nat. Phys. 12, 1005 (2016).

244212-7Y. Zang, et al. Sci. China-Phys. Mech. Astron. April (2024) Vol. 67 No. 4

https://doi.org/10.1002/adom.202202786
https://doi.org/10.1103/PhysRevA.66.043813
https://doi.org/10.1103/PhysRevA.66.043813
https://doi.org/10.1103/PhysRevA.88.033845
https://doi.org/10.1103/PhysRevApplied.17.024008
https://doi.org/10.1002/adma.202208884
https://doi.org/10.1038/s41566-022-01126-4
https://doi.org/10.1038/s41566-022-01099-4
https://doi.org/10.1364/OL.429940
https://doi.org/10.1364/OL.429940
https://doi.org/10.1103/PhysRevB.94.245148
https://doi.org/10.1021/acsphotonics.2c01534
https://doi.org/10.1021/acsphotonics.2c01534
https://doi.org/10.1103/PhysRevB.104.075149
https://doi.org/10.1103/PhysRevLett.121.193903
https://doi.org/10.1103/PhysRevB.105.195440
https://doi.org/10.1103/PhysRevB.106.125411
https://doi.org/10.1126/science.aba4597
https://doi.org/10.1038/s41467-021-24502-0
https://doi.org/10.1126/science.abq7870
https://doi.org/10.1021/acs.nanolett.2c01349
https://doi.org/10.1021/acsphotonics.1c01356
https://doi.org/10.1103/PhysRevB.107.075441
https://doi.org/10.1021/acs.nanolett.1c02751
https://doi.org/10.1103/PhysRevLett.128.253901
https://doi.org/10.1103/PhysRevLett.120.066102
https://doi.org/10.1038/s41586-022-05387-5
https://doi.org/10.1103/PhysRevX.7.041056
https://doi.org/10.1038/s41566-022-01098-5
https://doi.org/10.1002/adom.202000645
https://doi.org/10.1103/PhysRevLett.126.013601
https://doi.org/10.1103/PhysRevLett.113.037401
https://doi.org/10.1364/OL.42.001145
https://doi.org/10.1038/nmat4214
https://doi.org/10.1021/acsphotonics.6b00038
https://doi.org/10.1021/acsphotonics.6b00038
https://doi.org/10.1021/acsphotonics.7b01038
https://doi.org/10.1007/s11433-023-2145-6
https://doi.org/10.1103/PhysRevResearch.4.023189
https://doi.org/10.1103/PhysRevResearch.4.023189
https://doi.org/10.1021/acsphotonics.0c00014
https://doi.org/10.1021/acsphotonics.0c00014
https://doi.org/10.1002/lpor.201700113
https://doi.org/10.1002/lpor.201700113
https://doi.org/10.1103/PhysRevLett.127.267401
https://doi.org/10.1038/nphys3850

	Enhanced wide-angle third-harmonic generation in flat-band-engineered quasi-BIC metagratings 
	Introduction  tion 
	Design of the quasi-BIC flat band  band
	Results and discussions sions
	Conclusions sions


