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Acoustic corner state transfer mapping to synthetic higher-order topological semimetal
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The robust transport of quantized particles in gap systems through adiabatic cyclic evolution corresponds
to dynamical versions of topological insulators, which have recently emerged as a thriving topic. Until now,
these connections were thought to be limited to gap systems. Here, we report a mechanism for corner state
transfer in a gapless system, which arises as a synthetic higher-order Weyl semimetal. This is realized in the
phononic version of a breathing kagome lattice, which is stacked layer by layer with weak interlayer couplings
in the z direction, mimicking the time axis. We observed the corner state transfer, which hosts Weyl points
and hinge states in synthetic three-dimensional (two-dimensional lattice+one-dimensional time) space. Our
proposed corner states periodically undergo two topologically nontrivial phases along the time axis, resulting
in the transport of the corner states, which corresponds to the switching of the two hinge states. Moreover, we
experimentally demonstrated that the transport process is robust against defects. Our results provide insight into
studying topological phases in synthetic space as well as an effective approach for manipulating acoustic waves.
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Introduction. A famous example of topological state trans-
fer in synthetic dimensions is the topological pumping
proposed by Thouless [1]. It supports edge modes spanning
nontrivial band gaps with a time-modulated one-dimensional
(1D) periodic potential. The topological bulk response of 1D
topological pumping, characterized by nontrivial first Chern
numbers, matches that of two-dimensional (2D) quantum Hall
systems [2]. Generalizing the 1D topological pumping to 2D
results in an additional quantized bulk response corresponding
to the four-dimensional quantum Hall effect described by the
second Chern number [3–5]. This edge state transfer maps
dynamical phenomena to d-dimensional (dD) topological in-
sulators (TIs), which host (d − 1)D topological boundary
states according to the bulk-boundary correspondence. The
physics of topological pumping can be intrinsically inves-
tigated in condensed matter systems [6]. Additionally, this
physics can be extended to classical systems, giving rise to a
variety of extraordinary research in photonic [7–10], ultracold
atomic systems [11,12], mechanical systems [13,14], elastic
systems [15–18], and acoustics [19–22].

Recently, the concept of topological state transfer has been
extended to higher-order topology [23], which fundamentally
goes beyond the conventional bulk-boundary correspondence
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of conventional topology. According to the modern theory
of polarization, a dD hth-order phase is characterized by the
appearance of nontrivial boundary phenomena manifesting at
its (d − h)D boundaries [24,25]. This novel physical concept
of higher-order topology has opened up new avenues for
investigating topological phases and associated topological
states, including corner states and hinge states in higher-
order topological insulators (HOTIs) [26] and higher-order
topological semimetals (HOTSs) [27,28]. To date, a variety
of higher-order topological phases, such as second-order TIs
[29–31], third-order TIs [32,33], and second-order topolog-
ical semimetals [34,35], have been demonstrated in various
systems including electrical circuits, and photonic and acous-
tic systems. For a long time, research on topological state
transfer has mainly focused on the dynamic counterpart of
conventional TIs, with little attention paid to counterparts
in higher-order topological phases. However, recent theoret-
ical breakthroughs in higher-order topological pumping have
shown that the higher-order state transfer in gapped systems
is the dynamical realization of higher-order topology, bridging
the relationship between topological state transfer and HOTIs
[24,25]. A recent experimental realization of second-order
topological pumping in photonic waveguides [23], corre-
sponding to theoretically predicted HOTIs with chiral hinge
states, has validated this concept. So far, most research on
topological state transfer in first-order and higher-order topo-
logical systems has mainly focused on the insulator phases. As
far as we know, higher-order topological state transfer does
not involve counterparts in topological semimetals, which
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FIG. 1. Tight-binding model of corner state transfer without a
gap. (a) Schematic illustration of corner state transfer. The yellow
areas indicate the positions of the corner states. The inset shows
a unit cell. (b) Two in-plane coupling coefficients as a function of
t . Insets depict the Wannier centers denoted by blue stars. (c) The
bulk dispersion at the K point along the t direction. The band gap
between the lower two bands closes at t = T/4 and t = 3T/4, which
correspond to Weyl points with opposite topological charges denoted
by purple and green cones. The coupling parameters are φ0 = 0,
λ0 = −1.68, and δ = 1. (d) The projected dispersion of the supercell
along the t axis. (e) The evolution of the corner mode occupation
probabilities for an interaction time T = 10 000.

may provide an alternate approach to synthesize novel topo-
logical semimetals.

In this Letter, we report another mechanism for higher-
order corner state transfer in gapless systems, which can be
viewed as a HOTS in synthetic 3D (2D lattice + 1D time)
space. This can be realized in a dynamic 2D kagome lattice,
where the evolution of the corner mode from one corner to
another experiences gap closing and reopening. We observed
the corner state transfer in a phononic crystal by stacking
2D rhombic supercells in the z direction, where the in-plane
couplings in each layer vary periodically along z, mimicking
cyclic evolution with time. The topological phenomena in the
2D evolution process are rooted in the subtle higher-order
Weyl semimetal phase. The gap closure in the evolution corre-
sponds to the Weyl points with topological charges of ±1. The
trace of corner state transfer, supported by two distinct higher-
order topological phases, maps to the switching of hinge states
in the higher-order Weyl semimetal. The boundary states in
each 2D layer can be viewed as time slices of surface states
connecting Weyl points with opposite topological charges.
We also observe the backscattering-immune properties for
the corner state transfer. Our results provide a strategy to
construct a relationship between topological state transfer and
the HOTS phase, which can be exploited in the manipulation
of acoustic waves.

Model and methods. Figure 1(a) depicts a schematic of
corner state transfer using a tight-binding model, consisting
of 2D rhombic supercells with evolving coupling along tem-
poral space. The intracell couplings λ1 (red tubes) and the
intercell couplings λ2 (blue tubes) continuously vary with
time evolution in a half period, resulting in the transport
of corner states from one corner to another. The corner
state transfer experiences a gap closure corresponding to the

Weyl point, which is a different mechanism from the well-
recognized pumping process in gap systems. Viewing time
as a virtual axis, the dynamic 2D kagome system appears
as a higher-order Weyl semimetal in the synthetic 3D space.
From the perspective of semimetal physics, the hinge states,
which represent the trace of corner states along the time axis,
can switch between two hinges when passing through the
Weyl point.

We consider a unit cell of a 2D breathing kagome lattice,
where A, B, and C denote three types of atoms. The three-
band tight-binding Hamiltonian is given by

H (kx, ky, t ) =

⎛
⎜⎝

0 h12 h13

h∗
12 0 h23

h∗
13 h∗

23 0

⎞
⎟⎠, (1)

where h12 = λ1 + λ2e−ikx , h13 = λ1 + λ2e−i(kx/2+√
3ky/2), and

h23 = λ1 + λ2ei(kx/2−√
3ky/2). λ1 = λ0 + δ cos(φ0 + 2πt

T ) and
λ2 = λ0 − δ cos(φ0 + 2πt

T ) are the intracell and intercell cou-
plings with cyclic time evolution. φ0, λ0, and δ represent
the initial phase, unmodulated coupling, and modulation am-
plitude, respectively. The two in-plane couplings λ1 and λ2

are time-modulated cosine functions, as shown in Fig. 1(b).
In one cycle, the band gap will close at t = T/4 and t =
3T/4 denoted by black dashed lines, indicating the phase
transitions.

The topological properties of the kagome lattice are char-
acterized by bulk polarization,

Pi = −1

S

∫∫
BZ

Aid
2k, i = x, y, (2)

where Ai = −i〈u|∂ki |u〉 is the Berry connection, |u〉 is the
Bloch wave function, and S represents the area of the first
Brillouin zone (BZ). The position of the Wannier center
can be determined by the bulk polarization (Px, Py) as a
function of t . The evolution undergoes two distinct topolog-
ical phases, which are determined by the bulk polarization
(−1/2,−1/2

√
3) for |t − T/2| > T/4 and (0,0) for |t −

T/2| < T/4. The Wannier centers are located at two different
locations in the unit cell, as shown in the insets of Fig. 1(b).
The band structure at the high-symmetry point K as a func-
tion of t is shown in Fig. 1(c), where the band gap of the
lower two bands will close at t = T/4 and t = 3T/4, carrying
opposite topological charges denoted by cones with different
colors. The bulk state dispersions are linear along all three
directions near the twofold degenerate points, corresponding
to Weyl points. The dispersion of the time-dependent rhombic
supercell in a half period is shown in Fig. 1(d). The corner
eigenmode |C〉 shifts its distribution along the t axis with the
gap closing and reopening, where the opposite distribution is
denoted by blue dashed and solid lines. The evolution pro-
cess can be described by the Schrödinger equation i ∂

∂t ψ (t ) =
H (t )ψ (t ), where ψ (t ) is the transient state. After expanding
the transient state as the superposition of the eigenmode at
a given t value, the evolution of corner mode occupation
probabilities |aC (t )|2 = |〈ψ (t )|C〉|2 can be obtained, as shown
in Fig. 1(e). The transfer rate of the corner state from one
corner to another is close to one, similar to a pumping process.
However, the process is nonadiabatic due to the inevitable
transition to the bulk state at the gap closure moment. The
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FIG. 2. Acoustic corner state transfer exhibiting HOTS prop-
erties. (a) 2D time-modulated acoustic crystal and its unit cell.
(b) Schematic of the periodical distributions of hinge states denoted
by blue lines. (c) The projected dispersion along the time direction.
(d) Acoustic eigenpressure fields for bulk states (II, IV, VI), surface
states (V), and hinge states (I, III) corresponding to the eigenfre-
quency at the given t value in (c). (e) Bulk state dispersion of the unit
cell. The inset shows the first BZ, where purple and green spheres
represent Weyl points with charges of +1 and −1 at t = T/4 and
t = 3T/4. (f) The Fermi arcs connect Weyl points with opposite
charges on the I and II surfaces, represented by solid and dashed
lines, respectively. The frequency of Weyl points is set to 5133.9 Hz.

high transfer rate is rooted in the subtle high-order Weyl
semimetal phase in the synthetic space. Since the gap closing
and reopening with time conforms to a Weyl point, the density
of states is minimal, leading to a minimal transition to the
bulk states and a high transfer rate to the corner state on the
opposite corner.

To implement the scenario described above, we construct a
phononic crystal where the in-plane couplings in 2D kagome
lattices vary periodically with time. We consider a dynamic
2D rhombic supercell with a 3 × 3 unit cell as shown in
Fig. 2(a), where acoustic cavities are labeled from 1 to 40. The
inset shows the unit cell of the supercell with a lattice constant
of a = 81 mm, containing three cavities with H = 34 mm and
r = 15 mm corresponding to A, B, and C atoms. The intracell
couplings with r1 = r0 − δ cos(φ0 + 2πt

T ) and intercell
couplings with r2 = r0 + δ cos(φ0 + 2πt

T ) of each layer are pe-
riodically modulated as a function of cyclic time evolution t ,
where r0 = 5.2 mm and δ = 2.2 mm. The dynamic phononic
crystal corresponds well with the tight-binding model, as
shown in Supplemental Material Sec. I [36]. Accurate design
ensures that only one of the acute angles of the supercell
can pass through the Wannier centers in distinct topological

phases, making the higher-order corner states exist only at the
first or 40th atom. The corner state distribution along the time
axis, mapping to the hinge state, is consistent with the results
of the tight-binding model, as shown in Fig. 2(b). By using
time acting as a bridge, we can connect a conventional 2D
higher-order insulator response with 3D HOTS. If we view the
t axis as a virtual dimension, the topological phenomena in
the dynamic 2D rhombic supercell can be understood through
semimetal physics. Figure 2(c) shows the full dispersion of all
the states from the perspective of synthetic HOTS, including
the hinge, surface, and bulk states, denoted by blue, orange,
and gray lines, respectively. The states will undergo the
band closing and reopening process, where two hinge states
exist in the range of |t − T/2| > T/4 and |t − T/2| < T/4,
represented by blue dashed and solid lines, respectively.
Correspondingly, the simulated acoustic eigenpressure fields
for the bulk (II, VI, IV), surface (V), and hinge (I, III) at given
t values, are shown in Fig. 2(d). The slice of the hinge state
along the t axis is equivalent to the corner state at a given
t . Thus, the corner state transfer is the result of the hinge
state switch in synthetic HOTS. It is worth noting that no
corner state transfer is possible in existing HOTSs, as they
pass through topologically trivial and nontrivial phases along
the kz direction, and the hinge state only exists in a specific
kz range.

The higher-order Weyl semimetal properties in the evolu-
tion of corner states can be further confirmed by analyzing the
bulk band structure and Fermi arcs. The simulated bulk band
structure of high-symmetric lines shows two linear two-band
crossings at K± = (4π/3a, 0,±T/4), which correspond to
Weyl points with opposite charges as shown in Fig. 2(e). The
first BZ in the inset of Fig. 2(e) presents the distribution of
Weyl points, where the time-reversal counterparts are K ′

± =
(−4π/3a, 0,±T/4). The purple and green spheres indicate
the Weyl points with opposite topological charges of ±1.
The details of topological charges determined by the Wilson
loop at the degeneracy point are shown in Supplemental Ma-
terial Sec. II [36]. Fermi arcs connecting the projections of
Weyl points with opposite topological charges at the Weyl
point frequency are clearly revealed in Fig. 2(f) when con-
sidering the surface states in a ribbon. The hallmarks of a
synthetic higher-order Weyl semimetal, i.e., hinge states, Weyl
points, and Fermi arcs, can be found in the evolution of
corner states.

Since time-dependent intralayer coupling is difficult to
achieve in acoustic systems, we use the z axis to take over
the role of time in the experiment. We tested the aforemen-
tioned prediction by constructing a 3D phononic crystal. This
crystal consists of dynamic 2D rhombic supercells that were
stacked layer by layer with weak interlayer couplings in the
z direction, mimicking the time axis. The interlayer coupling
tubes (r3 = 3 mm and h3 = 4 mm) established a decoupled
vertical transmission channel for sound waves. Different from
the weakly coupled photonic waveguides which can match
well with the time-dependent model, the major difference is
the discrete character of the z axis and the interlayer cou-
plings in acoustics, resulting in a variation of kz. To obtain
the dispersion of a 3D phononic crystal as a function of kz

and t , we impose periodic boundary conditions to each layer
in the acoustic system that horizontal coupling varies slowly
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FIG. 3. Observation of the corner state transfer. (a) Photograph
of the 3D-printed sample. The green star indicates the location of the
sound source. (b), (c) Measured acoustic pressure spectra at the final
layer for the sample without defects and with defects, respectively.
The inset of (c) shows the defects in the fifth layer. (d) Measured
pressure intensity for corner state evolution with different layers at
5296 Hz. (e), (f) Measured pressure distributions for the sample
without defects and with defects at 5296 Hz, respectively.

along the z direction. The equifrequency trajectory of the
corner state kz(t ) can be visualized when a fixed frequency
of 5296 Hz is selected to cross the dispersion surfaces. This
means that the corner state in each discrete layer hosting
different kz can be excited at 5296 Hz. The details are given in
Supplemental Material Sec. III [36].

Experimental realization of a synthetic HOTS. To observe
the corner state evolution process, we selected nine discrete
layers to ensure a high corner state transfer rate and minimize
acoustic attenuation caused by transmission distance (Supple-
mental Material Secs. IV and V [36]). The sample composed
of nine stacking rhombic structures fabricated by a 3D print-
ing technique is shown in Fig. 3(a). The top and bottom of
the sample are set to the absorbing boundary conditions to
minimize internal reflections and outside interference. The
corner state is excited by a source represented by a green star
in the initial layer and transfers layer by layer until it is finally
absorbed at the top of the sample. A microphone was inserted
into the sample to probe the acoustic pressure signal. The
measured acoustic pressure spectra in the final layer are shown
in Fig. 3(b). The acoustic pressure for the boundary and bulk
mode is obtained by averaging the pressure of all the cavities
at the edge and bulk. The sound intensity is concentrated at
corner C opposite to the excitation source, and suppressed
at other positions near 5296 Hz, indicating the corner state
evolves from the excited source to the opposite corner. The
robustness of the corner state transfer was also observed by
removing a unit cell in the fifth layer of the sample. The
measured acoustic pressure spectra with the defects are shown
in Fig. 3(c), which shows similar results to Fig. 3(b), proving
the robustness of the corner state transfer against defects. The

experimental results match well with the simulated results in
Supplemental Material Sec. VI [36].

The pressure distributions of the corner mode evolution
at 5296 Hz are shown in Fig. 3(d) for the sample without
defects. The acoustic pressure is excited at the first cavity in
the first layer, then evolves into the bulk at the middle, and
gradually transfers to the 40th cavity (corner C) in the ninth
layer. The measured spatial distributions of acoustic pressure
at 5296 Hz are shown in Fig. 3(e), intuitively displaying the
evolution process of corner states. The evolution of corner
states forms hinge states along the z direction, with layers 1–4
on one hinge and layers 6–9 on another, which corresponds
to a synthetic HOTS. The evolution undergoes two distinct
topological phases leading to the opposite distributions of
hinge states, where the gap closes and a phase transition
occurs in the middle layer. Although the evolution is nonadia-
batic and inevitably affected by sound loss, the corner state
transfer can still be completed. The measured transfer rate
of the corner state is close to one, which is consistent with
the theoretical model. Further details are provided in Supple-
mental Material Sec. IV [36]. We also observed the spatial
pressure distributions with defects at 5296 Hz, as shown in
Fig. 3(f), where the corner state transmits smoothly around
the defects. The robustness of the corner state transfer against
the defects in different layers is illustrated in Supplemental
Material Sec. VII [36]. All the measured results match the
theoretical and simulated results, demonstrating the realiza-
tion of the corner state transfer and its counterpart, i.e., the
hinge states.

Conclusions. In conclusion, we designed and fabricated
a phononic crystal to demonstrate the corner state transfer,
which can be viewed as a dynamical realization of a novel 3D
second-order topological semimetal. The corner state evolu-
tion undergoes the processes of gap closing and reopening as
the in-plane coupling varies along the z direction, mimicking
the time axis. We found the key features of a higher-order
Weyl semimetal, including Weyl points, hinge states and sur-
face states, in the evolution process. We observed the corner
state transfer and its counterpart, i.e., the switching of the two
hinge states in a higher-order Weyl semimetal. Furthermore,
we experimentally verified the robustness of the transport
against defects. Our work is distinct from earlier works on
topological state evolution mainly reflected in a surprising
correspondence between low-dimensional dynamic systems
and high-dimensional semimetals. The corner state transfer
spanning two distinct topological phases in temporal space
is a mechanism for HOTS that is difficult to achieve for
usual topological semimetals that rely on kz modulation. This
work provides insights into the connections between different
topological systems, which can be further explored in other
systems, such as photonic systems and elastic systems.
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