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SUPPLEMENTARY NOTE 1. EFFECT OF THREE PARAMETERS ON TOPO-

LOGICAL PHASE TRANSITION

We investigated the topological phase transition in a bilayer Lieb lattice model as the
function of parameters m, t0 and tc. We start with the initial parameters m = 0.35, t0 = −2

and tc = −0.25 in a unit cell of bilayer Lieb lattice model corresponding to a trivial phase in
the lowest gap. We give the band structure at high-symmetric point M in Fig. S1 (a-c) by
varying the parameters m, t0 and tc, respectively. The control of m and tc can support three
pairs of degeneracy bands crossing with each other while t0 does not. Here, we focus on the
topological phase transition of the lowest bandgap, where the topology arising from lower
two bands are indicated by pink and blue areas for trivial and topological phase, respectively.
To confirm the nontrivial topological properties in the model, we calculated the spin Chern
number Cs of the lower two bands (green line), middle two bands (red line) and upper two
bands (blue line), as plotted in Fig. S1 (d–f). The edge modes at the bandgap originate
from the total topological invariants of the lower bulk bands. It is clearly shown that the
topological phase transitions occur by control of m and tc, while it remains unchanged by
control of t0. Although the change of t0 has no effect on the band structure at high symmetric
point M, it can regulate the band structure of other points at the Brillouin zone. The proper
regulation of t0/tc is conducive to obtain a complete gap. It paves the way for exploring the
topological properties of the system when disorder is applied to these parameters.

SUPPLEMENTARY NOTE 2. TOPOLOGICAL ANDERSON PHASE DIAGRAM

INDUCED BY DIFFERENT TYPES OF DISORDER

We investigated of the influence of three distinct disorders in a supercell with 21×21unit
cell via a bilayer Lieb lattice model. We define Ui∈A;µ = −(m + δU), Ui∈B,C;µ = m + δU ,
where δU=[−w/2, w/2] and w is disorder strength for m-type disorder. Similarly, t0 = t0+δt0

and tc = tc+δtc are set for t0- and tc- types disorder, respectively. Here, we demonstrate the
formation of m- and tc- types of topological Anderson insulators (TAIs) . We start with a
trivial gap by setting the initial parameters m = 0.35 , t0 = −2, tc = −0.25. Three distinct
types of random disorder are added to each unit lattices along both x and y coordinates
in the supercell with the hard boundary condition (HBC) and periodic boundary condition
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(PBC), respectively. We analyzed the disorder-induced phase diagram described by spin
Bott index as the function of different parameters and disorder strength, respectively, as
shown in Fig. S2(a,d,g). Although the increasing disorder may result in unreliable results
due to indistinguishable gaps, the tendency of topological phase transitions is certain. The
spin Bott index in the supercells with PBC changes from 0 to 1 for the m- and tc- type
disorder as the disorder increases, while it remains 0 for the t0- type disorder. This means
that the m- and tc- types disorder can induce topological phase transitions, while the t0-
type disorder cannot, which are consistent with the TAI mechanism. Setting a specific
disorder strength with non-zero spin Bott index denoted by star in Fig. S2(a), we further
present the energy eigenvalues in the disorder system with PBC (blue dots) and HBC (red
dots), as shown in Fig. S2(b). In the PBC, the total state numbers below the gap are
Nx ×Ny × 2, so the gap is the frequency area (cyan) between the state number Nx ×Ny × 2

and Nx ×Ny × 2 + 1. In the HBC, the boundary modes occur in the lowest gap, indicating
non-trivial topological phenomenon. The pseudospin dependence of the boundary modes
can be determined by their projection into the pseudospin space, represented by color map.
The wave function of one boundary mode in the supercell is shown in Fig. S2(c). The
energy distribution of eigenstate is localized on the edges of system with HBC, which shows
the key hallmark of TAI. The spin Bott index remains zero for the t0-type disorder with
increasing of disorder strength, as plotted in Fig. S2(d). By setting the specific disorder
strength indicated by star in Fig. S2(d), the corresponding energy eigenvalues with PBC
(blue dots) and HBC (red dots) show a trivial gap denoted by yellow area in Fig. S2(e). in
the presence of HBC, several bulk states are disturbed into the gap and one of them has an
eigenstate distribution as shown in Fig. S2(f). Finally, we analyze the tc-type disorder and
take the specific disordered strength in the topological phase. We show a topological gap
denoted by cyan in Fig. S2(h). The wave function distribution for one of the eigenstates
in the gap is plotted in Fig. S2(i), which is localized on the hard boundary of the finite
supercell. The appearance of boundary states implies the disorder-driven topological phase
transitions. Here, we investigate the mechanism of TAI and answer whether all types of
disorder can push a trivial phase to nontrivial, which is not clear in previous works.
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SUPPLEMENTARY NOTE 3. THE PSEUDOSPIN SPACE DEFINED IN THE

REAL SPACE

To analyze the topological properties in more extensive systems, such as quasicrystals,
fractal and disordered systems, we present synthetic spin-orbit coupling and pseudo-spin
space defined in the real space. In the disordered supercell with Nx × Ny unit cells, the
bilayer can provide a system with pseudospin of the upper and lower layers. The basis can
be taken as (Ai,µ=1, Bi,µ=1, Ci,µ=1, Ai,µ=-1, Bi,µ=-1, Ci,µ=-1)

T �where i = 1, . . . , Nx×Ny denotes
the atoms at the ith site on one layer and µ ∈ {1, -1} represents the pseudospin of the upper
and lower layers. Considering the HBC, we can reduce the Hamiltonian in Eq. (1) into a
block matrix form

H =



MA Hx Hy 0 0 0

H†
x MB 0 0 0 H+

H†
y 0 MC 0 H− 0

0 0 0 M ′
A Hx Hy

0 0 H†
− H†

x M ′
B 0

0 H†
+ 0 H†

y 0 M ′
C


, (S1)

where all the elements are matrices of size Nx × Ny. MA,B,C(M ′
A,B,C) are the diagonal

matrices representing the on-site energy of all atoms A, B and C in the upper (lower) layers
of the supercell. Hx(Hy) represent the intralayer coupling with strength t0 between all the
atoms A and their nearest-neighbor B or C. H+(H−) are the chiral interlayer coupling with
strength tc connecting the nearest-neighbor atoms B or C in the upper layer and the next-
nearest-neighbor atoms C or B in the lower layer. We take the unitary transform of the

Hamiltonian as H ′ = UHU †, where U = 1√
2

1 −i

1 i

 ⊗ I3×Nx×Ny , with the unit matrix

I3×Nx×Ny of size 3×Nx ×Ny. The original Hamiltonian can be transformed into

H ′ =



MA Hx Hy 0 0 0

H†
x MB iHs 0 0 −iHc

H†
y −iH†

s MC 0 −iH†
c 0

0 0 0 M ′
A Hx Hy

0 0 iHc H†
x M ′

B −iHs

0 iH†
c 0 H†

y iH†
s M ′

C


, (S2)
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where Hs =
(
H− −H†

+

)
/2 and Hc =

(
H− +H†

+

)
/2. The block matrix H ′ has a similar

form to the Bloch Hamiltonian of spin-Chern crystalline insulator with spin nonconservation
[1], in which the bilayer lattice provides a layer pseudospin degree of freedom similar to the
intrinsic spin of the electron. Hs term provides a synthetic spin-orbital coupling for the
system, which gives rise to the topological nontrivial gap. The topological properties are
preserved as long as the pseudospin-mixing term Hc is not strong enough to close the spin-
gap. Since the pseudospin operator ofH ′ is naturally σz⊗I3×Nx×Ny , the projected pseudospin
operator of the original Hamiltonian H can be determined as τy = U † (σz ⊗ I3×Nx×Ny

)
U =

σy ⊗ I3×Nx×Ny . Thus, the concept of spin-orbit coupling and pseudospin space defined in
momentum space can be extended to disordered supercell.

SUPPLEMENTARY NOTE 4. THE SPIN BOTT INDEX

Owing to the missing of well-defined bands, the topological properties of the supercell
with disorder can be described by the spin Bott index instead of spin Chern number. As
the spin Bott index does not depend on any symmetries, it is an effective tool to measure
the topological invariants based on real space. The theory of spin Bott index is based on
a finite supercell, where the free atoms are located in lattices on a torus, described by a
short-ranged, bounded, and gapped Hamiltonian. The calculation of the spin Bott index in
a 2D supercell with PBC imposed in two spatial directions [2–6] is described as follows. We
analyze the eigenvalue problem for a supercell with the size of Lx×Ly = Nx×Ny×a2, where
a = 1 is the lattice constant, and Nx,y is the number of unit cells. A crucial assumption can
be made as: Lx,y ≫ a. The projector operator of the eigenstates below the lowest gap can
be expressed as:

P =
Nocc∑
i

|ψi⟩ ⟨ψi|, (S3)

where |ψi⟩ denotes the eigenstates of the original Hamiltonian H, and Nocc=2×Nx ×Ny is
the number of the occupied states below the gap. The next key step is to separate Nx ×Ny

pairs of eigenstates into the pseudospin up and down states. As the projected spin operator
of H is τy, we project the projector operator (P) into the spin space:

Py = PτyP. (S4)
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In our systems, the eigenvalues of Py can be successfully split into two opposite groups
(±h̄/2) according to pseudospin up and down. The relevant eigenvalue problem can be
expressed as:

Py |±φi⟩ = S± |±φi⟩ , (S5)

where S±= ± h̄/2. We reconsider the projector operator of the eigenstates with pseudospin
up and down, respectively:

P±=W±

0 0

0 INx×Ny

W †
±, (S6)

where W± is a unitary matrix comprising the basis vectors |±φi⟩. The corresponding pro-
jected position operators in x and y spatial directions for pseudospin up and down are
represented as:

P±e
i2πX/LxP± = W±

0 0

0 U±

W †
±, (S7)

P±e
i2πY/LyP± = W±

0 0

0 V±

W †
±, (S8)

where X and Y are diagonal matrices with atomic coordinates in x and y spatial directions
as the diagonal elements. One can obtains the matrices U± = W †

±e
i2πX/LxW± and V± =

W †
±e

i2πY/LyW±. The spin Bott indices for pseudospin up and down can be given by:

B±= 1

2π
Im

{
Tr

[
log(V±U±V

†
±U

†
±)
]}

. (S9)

Finally, the spin Bott index can be written as Bs =
1
2
(B+ − B−).

SUPPLEMENTARY NOTE 5. METHODS

All numerical simulations are conducted with a finite element method based on COMSOL
MULTIPHYSICS solver package. The systems are filled with air, whose mass density and
sound speed at room temperature are 1.18 kg/m3 and 346 m/s, respectively. Owing to
the huge acoustic impedance mismatch compared with air, the 3D printing materials are
considered as hard boundaries. The TAI sample is stitched together from three layers of
3D printing structures, including two air layers modulated by square scatterers and a chiral
coupling layer connecting them. The detail for the sample fabricated by 3D printing and
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experimental set up is shown in Fig. S3. A subwavelength headphone with a diameter of
4 mm is used as sound source in the experiment measurements. The headphone is placed
inside the upper layer of sample at the intersection of two hard boundaries for boundary
states excitations. A sub-wavelength microphone probe (diameter=3.2mm, B&K Type 4138)
was used to measure the acoustic pressure field distributions. A network analyzer (Keysight
E5061B 5Hz-500MHz) was used to send and record both the amplitude and phase of the
acoustic signals. The dispersions of boundary states were obtained by imposing FFT (Fast
Fourier Transformation) to scan acoustic pressure field distributions on the upper layer.

SUPPLEMENTARY NOTE 6. THE FORMATION OF TAI WITH THE INCREAS-

ING OF DISORDER

Here, we simulated the topological Anderson phase in TAI sample as the function of
disorder strength, which are characterized by the transition of spin Bott index and the
occurrence of boundary states. The eigen-frequencies of the acoustic structure with PBC
and HBC denoted by blue and red dots are simulated in Fig. S4(a). The topological
Anderson phase described by spin Bott index as the function of the disorder strength is
shown in Fig. S4(b). Random rotating scatterers introduce both the on-site energy disorder
and the in-plane coupling disorder, but only on-site energy disorder induces a topological
Anderson phase, and in-plane coupling disorder can ensure an absolute gap. In the PBC,
the closure of the gap during the phase transition can be achieved only when the simulated
sample size is infinite, which explains why our simulated gap does not close during the phase
transition. In addition, the existence of absolute gaps ensures the observation of edge states
for sufficiently strong disorder. The topological Anderson phase described by spin Bott
index as the function of the disorder strength is shown in Fig. S4(b). With the increasing
of disorder strength, the phase in TAI sample is stably located in the topological phase,
and the topologically protected boundary states also exist in the gap. The disorder in real
acoustic structure varies within a range and cannot indefinitely increase without destroying
the lattice as in the tight-binding model, which results in the difference of the topological
Anderson phase from that in Fig. S2(a). The major difference is that the disorder in acoustic
structure cannot be large enough to bring the topological Anderson phase back to the trivial
like the on-site energy disorder in tight-binding model.

7



In order to demonstrate that topological Anderson phase in TAI sample comes from the
on-site energy disorder, we obtain the topological Anderson phase transition consistent with
the sample by limiting the on-site energy in tight-binding model to the range of -0.5 and
0.5. The on-site energies beyond this range are set to increase or decrease with the opposite
slope. The calculated eigenvalues as a function of disorder strength are given in Fig. S4(c),
where the boundary states exist in the gap as the disorder strength increases. The relevant
topological phase transition is shown in Fig. S4(d). The system is driven from trivial to
nontrivial phase by on-site energy disorder and stays in topological nontrivial phase with
the increase of disorder strength, which is consistent with the topological phenomenon in
the sample.

SUPPLEMENTARY NOTE 7. PSEUDOSPIN POLARIZATION OF DISORDER-

INDUCED BOUNDARY STATES

In order to distinguish the pseudospin polarization of the experimental field distribution
of boundary states along x and y directions, we extracted the acoustic field that transmits
steadily along both two boundaries and projected them into the pseudospin space, as shown
in Fig. S5. The corresponding eigenvalue problem shows that the boundary state prop-
agates along the x and y directions carrying the pseudospin-up and -down polarizations,
respectively. The polarization is not strictly close to +1 or −1 due to the system without
pseudospin conservation and the influence of disorder. Nevertheless, the polarizations can
still be split into two opposite groups separated by 0.

∗ Corresponding author: hcheng@nankai.edu.cn
† Corresponding author: zyliu@whu.edu.cn
‡ Corresponding author: schen@nankai.edu.cn
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FIG. S1. The bulk bands at high-symmetric point M and the relevant phase transition determined

by spin Chern number. The bands at M point as the function of (a) on-site energy m, (b) intralayer

coupling t0 and (c) chiral interlayer coupling tc. The spin Chern number as the function of (d)

on-site energy m, (e) intralayer coupling t0 and (f) chiral interlayer coupling tc.
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FIG. S2. Phase transitions induced by different type of disorder. Starting with a trivial phase in

a supercell model with 21 × 21 unit cell, the initial parameters are set to t0 = −2, tc = −0.25,

m = 0.35. (a) Topological Anderson phase diagram for m-type TAI. The yellow star denotes

the specific disorder strength used in (b). Gray areas are unreliable results that is removed due

to indistinguishable gaps. (b) The supercell with PBC (grey dots) shows a topological gap. In

the presence of HBC (blue dots) shows pairs of pseudospin dependent boundary modes in the

topological gap denoted by red and blue dots. (c) Field distribution of a typical midgap state in

(b), showing the characteristic of boundary mode. (d) Spin Bott index remain zero for t0-type

disorder. (e) Energy eigenvalues with PBC and HBC show trivial gap by setting specific disorder

strength represented by red star in (d). (f) Field distribution of a bulk mode with HBC near

the gap in (e). (g) Topological Anderson phase diagram for tc-type TAI. (h) Energy eigenvalues

with PBC and HBC show a topological gap, where exist disorder-induced boundary modes with

pseudospin up and down polarizations represented by red and blue dots. (i) Field distribution of

a typical midgap state in (h), showing a boundary mode.
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FIG. S3. The experimental set up and sample details. Inset shows the detail of the sample

composed of three layers of 3D printing.
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FIG. S4. The formation of TAI with the increasing disorder strength. (a) The simulated eigenvalues

for TAI sample as a function of disorder strength, where the blue points and red points represents

the eigenvalues with PBC and HBC, respectively. (b) The formation of TAI described by spin

Bott index as a function of disorder strength. The red star indicates a specific disorder strength

of the sample fabricated in Fig. S3. (c) The eigenvalues for tight-binding model, where on-site

energy only varies within a certain range of -0.5 and 0.5. The initial parameters are set to t0 = −5,

tc = −0.25, m = 0.35. (d) The formation of topological Anderson phase for tight-binding model

in (c).
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FIG. S5. Pseudospin polarization of excited boundary states. The projection of the x and y direc-

tion sound field in the pseudospin space shows positive and negative values respectively, implying

that it carries the polarization of pseudospin up (orange) and pseudospin down (green), respec-

tively. The grey areas mean frequencies of bulk modes.
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