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S-I COMPARISON BETWEEN TIGHT-BINDING MODEL AND FINITE ELE-

MENT METHOD

To confirm the coincidence between the band structure of the designed phononic crystal
and that of the theoretical model, we fitted the coefficients of the TB model and compared
the band structure obtained by TB model and finite element method (FEM). The designed
phononic crystal is filled with air, where the mass density is 1.2 kg · m−3 and the sound
velocity is 347 m · s−1. The coupling coefficients λ1, λ2 of the TB model as a function of
time t can be obtained by fitting the simulated results, as shown in Fig. S1(a). Taking the
coupling coefficient at t = 0, the reduced bulk band structures along high-symmetric lines
calculated by TB model (red lines) and FEM (blue circles) are plotted in Fig. S1(b). The
results for TB model and FEM agree well with each other, indicating the designed phononic
crystal can realize the phenomena predicted by theoretical model.

S-II TOPOLOGICAL CHARGE OF THE WEYL POINTS

The topological charge of the degeneracy point in the Brillouin region (BZ) can be de-
termined by calculating the Wannier bands [1, 2]. We calculated the Wannier bands on the
t = T/4 planes at K(K ′) of BZ through Wilson-loop, as shown in Fig. S2. The integral
region is a closed sphere parametrized by polar angle θ and azimuthal angle φ in the BZ,
which encloses the degenerate point. The polar angle θ is varying from θ = 0 (the north
pole) to θ = π (the south pole). The Wannier bands shift downwards in Fig. S2(a) but
upwards in Fig. S2(b), corresponding to the Chern number C = 1 and C = −1, respectively.
Thus, the topological charges of the Weyl point at K and K

′ of BZ on the t = T/4 plane
are 1 and −1, respectively. Through the same way, the topological charges at K and K ′ on
the t = 3T/4 plane can be determined as −1 and 1.

S-III DISPERSION OF THREE-DIMENSIONAL PHONONIC CRYSTAL

Since acoustic systems cannot be weakly coupled in a continuous manner along z axis,
we discretize the z axis and stack 2D rhombic supercells in the z direction to create a
three-dimensional phononic crystal, as shown in Fig. S3(a). The inset gives the rhombic
supercells in one layer which connects neighboring layers with couplings in the z direction.
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Assuming the variations of intralayer coupling between layers are small enough along z
direction, each layer can approximately satisfy periodic boundary conditions. We consider
the wavenumber kz in the z direction, in addition to the evolution of in-plane couplings, to
obtain the dispersion of this 3D structure with infinite layers in a half cycle. The dispersion
bands as functions of time t and wavenumber kz can be obtained by imposing periodic
boundary conditions in the z direction to each layer, as shown in Fig. S3(b). We choose a
fixed frequency of 5296 Hz, indicated by the blue horizontal sheet, to intersect the dispersion
surface. All modes along the curve resulting from the intersection can be excited at this
frequency. The evolution of corner states along the curve can be visualized in Fig. S3(c),
where the dashed and solid blue lines indicate the corner state located at different corners.
Insets show the relevant acoustic pressure fields at I, II and III. To simulate an approximately
continuous evolution in a half cycle, we stacked a structure with 36 layers and performed
wavelet transform on the excitation field at 5296 Hz [3]. The result of wavelet transform
is shown in the color map of Fig. S3(c), which is consistent with the dispersion curve of
the corner state. The three-dimensional phononic crystal can be viewed as an acoustic
waveguide. The corner mode of each layer hosting different kz can be excited at 5296Hz,
thus the experimental excitation frequency for corner state transfer can be determined.

S-IV CORNER STATE TRANSFER RATE

In order to investigate the transfer rate between the excited sound field and the corner
eigenmode, we calculate the experimental occupation probabilities of corner eigenmode, and
further simulate the occupation probabilities of corner state with different number of discrete
layers Nz [4, 5]. Experimental occupation probabilities of corner state can be captured by
the weightings of the final and initial eigenstates in the measured pressure fields |ψe⟩. At
the excitation frequency of 5296 Hz, the band structure for corner eigenmode ε2, the lower
boundary mode ε1 and the upper bulk mode ε3 as a function of kz(t) is plotted in Fig. S4(a),
which can be obtained by the intersecting planes in Fig. S3(b). The color map represents
the weightings of initial corner eigenmode |ψ2i⟩ and final corner eigenmode |ψ2f⟩. The
simulated field distributions for the initial and final eigenmodes in three bands are plotted
in Fig. S4(b). The weightings of |ψ2i⟩ and |ψ2f⟩ in the eigenstate |ψ2⟩ indicate an adiabatic
case that evolution remain in the eigenstates, denoted by the dashed lines in Fig. S4(c).
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The weightings of |ψ2i⟩ and |ψ2f⟩ decrease and increase layer by layer respectively, and are
distributed symmetrically due to the inversion symmetry (x, y, t) →

(
−x,−y, T

2
− t

)
. The

weightings of |ψ2f⟩ and |ψ2i⟩ in the measured sound pressure field |ψe⟩, denoted by solid
lines, deviate from the adiabatic results near gap closure layer (the fifth layer), due to the
non-adiabatic evolution. Specifically, the point-like sound source in experiment excites not
only a single eigenmode |ψ2i⟩, but also some other evanescent local modes, which leads to
the deviation of the first point between the red solid and dashed line. Before the gap closure
layer, the evolution of the measured pressure fields is consistent with the adiabatic process.
The experimental evolution process inevitably experiences non-adiabatic process and sound
loss, so the experimental corner state weighting (blue solid line) is lower than the adiabatic
case (blue dashed line) after the gap closure layer. Nevertheless, the experimental sound
field can still evolve from initial corner eigenmode to the final one. In the last layer of
experimental pressure field |ψe⟩, the weightings of |ψ2f⟩ is close to one, which means that
the experimental pressure field almost completely evolves into the corner eigenmode |ψ2f⟩

in the last layer. This experimental occupation probabilities of the corner state is consistent
with the theoretical results shown in Fig. 1(e).

In addition, occupation probabilities of corner eigenmode is also related to the number
of discrete layers Nz in half cycle. To better emulate the experimental results, all the
sound velocity is set to 347(1 + 0.006i) m · s−1, where the imaginary part indicates the
sound transmission loss through air. We calculated the weightings of |ψ2i⟩ and |ψ2f⟩ in
the final layer of simulated excitation sound pressure field |ψf⟩ as a function of Nz. As Nz

increases, the weighting of |ψ2i⟩ decreases and the weighting of |ψ2f⟩ increases as shown in
Fig. S4(d), indicating the simulated excitation sound field evolves layer by layer into corner
eigenmode |ψ2f⟩. When Nz=9, the weighting of |ψ2f⟩ approach to one, which is consistent
with the experimental results. With the further increase ofNz, the weighting of |ψ2f⟩ steadily
approaches one, but is not equal to one, which is the result of the non-adiabatic evolution.
At the same time, weightings of the lower eigenmodes and upper eigenmodes are small as
shown in Figs. S4(e, f), which means that the excitation pressure fields rarely evolve to |ψ1f⟩

or |ψ3f⟩. Therefore, the experimental and simulated results show that the excitation sound
pressure field can evolve from one corner eigenmode to another one when the discrete layer
number is greater than nine.
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S-V INTENSITY AND TRANSMISSION FOR CORNER MODE WITH DIFFER-

ENT DISCRETE LAYERS

In order to determine the number of discrete layers required for corner state transfer, we
give the intensity and transmission for corner mode with different number of discrete layers
Nz in half cycle. Considering the sound attenuation in the air, we set the sound velocity
to 347(1 + 0.006i) m · s−1 in the simulation. The relative acoustic intensity of corner C
is normalized by the total acoustic intensity of the final layer, as shown by green squares
in Fig. S5(a). As the number of discrete layer increases, the sound intensity of the last
layer gradually concentrates on corner C. When the number of discrete layers is greater
than seven, the sound intensity of corner C remains stable. In addition, we calculated the
ratios of the sound intensity between the input (sound source position) and output (corner
C) with different numbers of discrete layer, denoted by red triangles in Fig. S5(a), which
indicate the transmission for corner state [6, 7]. The results show that the sound intensity
can be reliably transported from input corner to the output corner when Nz is greater than
seven. But with the further increase of Nz, the transmission decreases due to attenuation
of sound intensity arising from the increase of transmission path. Considering the corner
state transfer effect and the corner state transfer rate in Figs. S4(d-f), we fabricated and
measured the sample with nine layers for the corner state transfer indicated by blue dashed
line. We further considered the case for even number of discrete layers, such as Nz=10

denoted by orange line. Even the band is gapped in each layer, the corner state transfer
can still complete through tunneling effect. The simulated acoustic pressure spectra at the
final layer are shown in Fig. S5(b). The sound transport from one corner (corner A) to the
opposite corner (corner C) is still supported near the frequency of 5296 Hz.

S-VI SIMULATED CORNER STATE TRANSFER

In order to compare the corner state transfer between the simulated and experimental
results, we simulated the corner state transfer of nine layers without and with defects. Due
to the substantial acoustic impedance contrast compared to air, hard boundary conditions
are applied in the simulations, whereas absorbing boundary conditions are used at the top
and bottom surfaces to reduce sound reflection. The simulated distributions of acoustic
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pressure spectra at the final layer are shown in Figs. S6(a, b). The acoustic pressure of
corner C is depicted by the red shaded curve. The peak of the red shaded curve indicates
that the corner state transfer is supported and the other modes are suppressed at 5296
Hz. The simulated acoustic pressure distributions at 5296 Hz without and with defects are
shown in Figs. S6(c, d), where corner state evolves from the initial layer to the final layer
along the z direction. The corner states are distributed in the opposite positions in the
process of the phase transition, which can map to the hinge state switching and exhibit a
novel second-order topological semimetal property. The corner state transfer without and
with defects exhibits consistent topological properties, which demonstrate the corner state
transfer is immune to the defects. The simulated results are in good agreement with the
experimentally observed results.

S-VII CORNER STATE TRANSFER WITH DEFECTS IN DIFFERENT LAYERS

In order to further verify the robustness of the corner states against defects, we simulated
the corner state transfer with defects in different layers. The evolution of corner state
undergoes gapless and gapped layers. The defects in the gapless layer have been shown in
Fig. 3. The robust transportation against defects in gapped layer (the 3th layer), is given
in Fig. S7. The transfer of corner states is still supported at 5296 Hz, denoted by red
curves in Fig. S7(a). The acoustic pressure field distributions at 5296 Hz with the defects
in the 3th layer are shown in Fig. S7(b). The corner state transfer is clearly shown from the
acoustic pressure field distributions. Therefore, the corner state transfer can be successfully
implemented whether the defects are in the gapless or gapped layers, which demonstrate the
robustness of the corner state transfer in the synthetic space.
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FIG. S1. (a) The coupling coefficients λ1 and λ2 of the TB model as a function of time t. (b) Bulk

band dispersions at t = 0 calculated by TB model and FEM. The parameters of TB model are set

to λ1 = −59.1, λ2 = −229.8, and f0 = 5258.8, where f0 represents on-site potential energy.

FIG. S2. The Wannier bands as a function of the polar angle θ at (a) K and (b) K ′ of BZ at the

t = T/4 plane.
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FIG. S3. (a) Schematic of the 3D acoustic crystal with discrete in-plane coupling along z direction

and one of the layers. (b) Dispersion diagram of the 3D acoustic crystal in half cycle, where each

layer terminates by a hard-wall boundary along the x and y direction, and a periodic boundary

condition along the z direction. The corner mode transfer is represented by green surface, and the

bulk bands are denoted by gray surfaces. (c) Wave number kz as function of t at f = 5296 Hz,

corresponding to equi-frequency contour of the corner mode resulted from the intersection of blue

plane in (b). The color map is the wavelet transform results. The insets show the acoustic pressure

at I, II and III.
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FIG. S4. Occupying probabilities of eigenmodes. (a) The band structure as the function of wave

number kz and time t at 5296 Hz. The color map represents the weightings of |ψ2i⟩ and |ψ2f ⟩.

(b) Sound pressure field distributions of the initial and final eigenmode for edge band |ψ1⟩, corner

band |ψ2⟩ and bulk band |ψ3⟩ in (a). (c) The weightings of |ψ2i⟩ and |ψ2f ⟩ in the each layer of the

measured pressure field |ψe⟩ and eigenmode |ψ2⟩, denoted by solid and dashed lines, respectively.

(d-f) The simulated weightings of the eigenmodes in the final layer with different number of discrete

layersNz. |ψf ⟩ is simulated excitation pressure field with different Nz.
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FIG. S5. Intensity and transmission for corner mode with different discrete layers. (a) The intensity

of corner C in the last layer (green squares) and the transmission (red triangles) with different

numbers of layers. The blue dashed line denotes the sample with Nz=9. (b) The simulated

distributions of acoustic pressure spectra in the final layer with Nz=10 denoted by orange dashed

line in (a).
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FIG. S6. The simulated results of the corner state transfer. (a, b) The simulated acoustic pressure

spectra at the final layer for a sample without and with defects, respectively. (c, d) The simulated

acoustic pressure distributions at 5296 Hz without and with defects, respectively. The green star

denotes the excited source.
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FIG. S7. Corner state transfer with defects in the 3th layer. (a) The simulated distributions

of acoustic pressure spectra at the final layer with defects in the 3th layer. (b) The simulated

distributions of the acoustic pressure at 5296 Hz with defects in the 3th layer.
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