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Correspondence between real-space topology and spectral flows at disclinations
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The recent interest in topological states localized to disclinations has highlighted the bulk-disclination corre-
spondence, which links the reciprocal-space topology of a lattice to the emergence of such states. In this work,
we extend such correspondence to the real-space topology. We construct a lattice with trivial reciprocal-space
topology, in which the emergence of topological states and spectral flows at disclinations is induced by real-space
topology. We experimentally verify the correspondence between real-space topology and disclination states
in electrical circuit systems. Our findings offer insight into the real-space topology and enrich the family of
topological states with their realization in topolectrical circuits.
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I. INTRODUCTION

In recent years, topological defects that reflect the bulk
and real-space topology have become a topic of great inter-
est in the field of topological physics. These defects include
dislocations [1,2], vortex distortions [3–5], and disclinations
[6–10]. Disclinations, which are defects of rotational sym-
metry, can trap fractional charges induced by higher-order
topology and form localized bound states [11–14]. The phe-
nomenon of topological disclination states is explained by
the bulk-disclination correspondence [12], which links the
reciprocal-space topology of the lattice to their emergence.
However, this correspondence is not always sufficient, as
shown by recent discoveries of symmetry-protected disclina-
tion states in the absence of reciprocal-space topology [15,16].
In these cases, the interplay between localized orbitals and
Bloch wave functions becomes more essential for topological
effects at disclinations, revealing that the real-space topology
also plays an important role in addition to the reciprocal-space
topology of the bulk.

The real-space topology and the related orbital-induced
phenomena can be described by the framework of topological
quantum chemistry, which offers a new way to characterize
the band theory of materials by combining descriptions in real
and reciprocal space [17–20]. Higher-order topological insu-
lators [21,22] and fragile topological insulators [23,24] that
go beyond the traditional bulk-boundary correspondence have
been uniformly depicted in this framework. In these materials,
the gapped bands can always be expressed as a combination
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of elementary band representations that originate from atomic
orbitals at Wyckoff positions, i.e., high-symmetry points in
real space. The real-space invariants (RSIs) attributed to such
a combination give rise to spectral flows under twisted bound-
ary conditions [25]. Spectral flows have been observed in
fragile topological systems [26] and obstructed atomic limit
(OAL) topological phases [27].

In this work, by exploring spectral flows at disclinations,
we extend the bulk-disclination correspondence to the real-
space topology. We demonstrate that the disclination states
induced by the localized orbitals can contribute to the gap-
less spectral flows. We first construct a tight-binding lattice
possessing nonzero RSIs and a trivial topological index in
reciprocal space and find that spectral flows emerge at discli-
nations with Frank angles of π/3, 2π/3, and π . Then we
observe the spectral signatures and symmetry properties of
topological disclination states in topolectrical circuits. Ow-
ing to the one-to-one mapping to the lattice model and high
manipulability, electrical circuits provide an ideal platform
for controlling the hopping parameter in a distorted lattice
[28–32]. All theoretical, numerical, and experimental results
consistently evidence the correspondence between the real-
space topology and spectral flows at disclinations.

II. MODEL AND METHODS

We first consider a tight-binding model in the wallpaper
group p6mm (C6v) before introducing disclinations. The unit
cell of the lattice is shown in Fig. 1(a), with the intracell and
extracell couplings t1 and t2, respectively, each having nega-
tive values. By varying t1 and t2, we observe two OAL phases
with distinct topological properties, where the Wannier charge
centers are located at Wyckoff position 1a or 3c, away from
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FIG. 1. Tight-binding model for introducing disclination and spectral flows. (a) Unit cell with Kekulé modulation of the coupling. The
lattice sites are denoted as black spheres. The labels of the Wyckoff positions are in red. The couplings within unit cells (orange lines) and
among neighboring unit cells (blue lines) are represented by t1 and t2, respectively. (b) Band structures of the tight-binding model for the
OAL(1a) phase with t1 = −2.2 and t2 = −1 and the OAL(3c) phase with t1 = −1 and t2 = −2.2. Little-group representations are labeled for
each band. (c) Schematic of the tight-binding model with a hexagonal lattice. (d)–(f) Tight-binding models in which disclinations with Frank
angles of π/3, 2π/3, and π are introduced, causing the lattice to become C5, C4, and C3 symmetric, respectively. (g)–(j) Topological states and
spectral flows as a function of the hopping multiplication factor λ. The lattices are C6, C5, C4, and C3 symmetric, respectively. The bulk band
gap at λ = 1 is between the green dashed lines.

the lattice sites [33]. The band structures for the OAL(1a)
phase (|t1| > |t2|) and OAL(3c) phase (|t1| < |t2|) are dis-
played in Fig. 1(b). Through an analysis of the irreducible
representations (irreps) of the three lower bands, we determine
that the decompositions of elementary band representations
for the OAL(1a) and OAL(3c) phases are (A1)1a ⊕ (E1)1a and
(A1)3c, respectively. While the OAL(3c) phase has a nontrivial
bulk polarization, the OAL(1a) phase has a trivial topological
index in reciprocal space [6,34]. A more detailed explanation
of this deduction from the perspective of topological quantum
chemistry is provided in Appendix A 1.

In order to probe the real-space topology, a Cn-symmetric
twisted boundary condition that passes through the symmetry
center of the system is introduced. We present a C6-symmetric
twisted boundary condition in Fig. 1(c) which divides the
system into six parts that transform into each other under
C6. The hopping strength across the cut is multiplied by λ,
and to ensure a well-defined gauge transformation, the cut
cannot pass through sites, only through couplings. For sites
near the twisted boundary, the on-site energy is a function of
nearest-neighbor hopping and is given by 2t1 + t2 + ∑ |tNN|.
It is important to note that the shift in the on-site energy does

not close the band gap or alter the topological characteristics
of the spectral flows.

The existence of gapless spectral flow depends on the
real-space topology of Wannier orbitals at Wyckoff positions.
RSIs with time-reversal symmetry determine the imbalance
of the C6-symmetric eigenstates below the band gap and are
functions of irrep multiplicities, as given by [25]

δ1 = −m(A) + m(1E1
2E1),

δ2 = −m(A) + m(1E2
2E2),

δ3 = −m(A) + m(B).

(1)

The nonzero RSIs for the OAL(1a) and OAL(3c) phases
are (δ1, δ2, δ3)1a = (0,−1,−1) and δ3c = −1, respectively.
For λ = ±1, crossing the Cn-symmetric twisted boundary is
equivalent to a gauge transformation for the system’s Hamil-
tonian, given by

H (λ) = V (λ)H (1)V †(λ). (2)

If |ψ〉 is an eigenstate of H (1) with Cn eigenvalue ξ , V (λ)|ψ〉
is an eigenstate of H (λ) with Cn eigenvalue λξ . The gauge
transformation under λ = −1 interchanges irreps 1E1

2E1 with
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1E2
2E2 and A with B, while the multiplicities below the band

gap are changed to δ1 − δ2 and δ3.
The spectral flows arising from nonzero RSIs are charac-

terized by two pairs of level crossings: one pair with irreps
1E1

2E1 and 1E2
2E2 and another with irreps A and B. To

observe the spectral flows, we can examine the local den-
sity of states at the central cell along the path (λ = 1) →
(λ = −1), as shown in Fig. 1(g). The spectrum at λ and
−λ is symmetric under C2 due to the gauge transformation
H (−λ) = V H (λ)V †. However, in contrast to the OAL(1a)
phase, the spectral flows vanish in the OAL(3c) phase because
the RSIs are trivial at Wyckoff position 1a. Instead, the orbital
(A1)3c gives rise to spectral flows in the OAL(3c) phase under
C2-symmetric twisted boundary conditions. More details can
be found in Appendix A. It is also worth noting that the
corner states due to bulk polarization in the OAL(3c) phase
do not contribute to the topological spectral flows (see Fig. 5
in Appendix A). This is attributed to the trivial real-space
invariants (δ1, δ2)1a = (0, 0) for the OAL(3c) phase, whose
corner states do not induce any imbalance in the multiplicities
of states within the bulk band.

We utilized the Volterra process to introduce disclinations
into the honeycomb lattice by removing a section from the
lattice structure [13]. With this method, we generated C5-, C4-,
and C3-symmetric structures with Frank angles of � = π/3,
2π/3, and π , respectively, as illustrated in Figs. 1(d)–1(f).
The local density of states in Figs. 1(h)–1(j) demonstrates the
observation of topological states and spectral flows in these
structures. Specifically, each irrep in the rotation group Cn ap-
pears in the band gap. Disclination states with irreps 1E1

2E1,
1E2E , and 1E2E appear in C5-, C4-, and C3-symmetric
structures near λ = ±1, respectively. The eigenvalues of the
rotation operator of these states are e±2π/n, indicating an an-
gular momentum of l = ±1. These disclination states do not
contribute to robust gapless spectral flows. On the other hand,
other irreps with l �= ±1 form gapless spectral flows, which
remain robust against the shifting of on-site energy, as demon-
strated in Fig. 6 in Appendix A 2. In C4-symmetric lattices,
the spectrum at λ and −λ is symmetric due to the gauge trans-
formation under C2, as shown in Fig. 1(i). However, twisted
boundaries lacking C2 symmetry with λ = −1 under C5 or
C3 do not support gauge transformations due to geometric
frustration. In such cases, the eigenstates of H (1) and H (−1)
are inverted, with the eigenvalues shifted from E to −E . This
inversion of states results in asymmetric spectral flows in
lattices under C5 or C3, as demonstrated in Figs. 1(h) and 1(j).

The Wannier orbitals remain localized at the unit cell
centers even under disclination and produce the topological
states at the disclination core. Among these states, irrep A
originating from the (A1)1a orbital causes an imbalance in the
bulk states below the band gap. The corresponding RSIs for
the C5-symmetric lattice can be defined as

δ1 = −m(A) + m(1E1
2E1),

δ2 = −m(A) + m(1E2
2E2). (3)

In the OAL(1a) and OAL(3c) phases, the RSIs are (δ1, δ2)1a =
(−1,−1) and (δ1, δ2)1a = (0, 0), respectively. While discli-
nation states with irreps 1E1

2E1 do not contribute to band
closing under the twisted boundary, the nonzero RSIs lead to

FIG. 2. Experiment measuring a C5-symmetric topolectrical cir-
cuit. (a) Circuit model of the C5-symmetric lattice. (b) and (c) Top
and bottom layers of the double-sided printed circuit board.
(d) Simulated impedance between the ground and center nodes.
(e) Experiment and simulation results of the impedance spectrum
at λ = 0.37, 0.45, and 1. (f) Simulated and experimental results of
the voltage distribution at the resonance frequency of 1E2

2E2 and
1E1

2E1 states. A voltage source with an amplitude of Vs is applied
between a node at the disclination core (green arrow) and the ground.

topological spectral flows of states with irreps A and 1E2
2E2,

flowing from the lower bands to the upper bands and from the
upper bands to the lower bands, respectively. In contrast, no
disclination states or spectral flows are observed at the lattice
center in the OAL(3c) phase (see Fig. 5 in Appendix A 1).
Similar properties are found in C4- and C3-symmetric struc-
tures, where the RSIs are nonzero in the OAL(1a) phase.

In C4-symmetric lattices, a twisted boundary with λ = −1
is equivalent to a gauge transformation that transforms irrep A
into irrep B, causing a state with irrep B to flow from the upper
bands to the lower bands, as observed in Fig. 1(i). Disclination
states with irreps 1E2E were experimentally demonstrated
earlier in an acoustic system [15] for the OAL(1a) phase
with C4 symmetry and λ = 1. Compared to the results con-
sidering only the bulk-disclination correspondence [12], the
divergence in the OAL(1a) phase arises due to the Wannier or-
bitals at the disclination core. Removing atoms from the core
cell leads to the disappearance of the disclination states and
spectral flows in the OAL(1a) phase, while the RSIs become
trivial. Moreover, in the OAL(3c) phase, the separation of the
charge associated with the Wannier center at Wyckoff position
3c leads to the appearance of higher-order states at the inner
corner, as demonstrated in Fig. 7 in Appendix A 2.

III. EXPERIMENT REALIZATION IN
TOPOLECTRICAL CIRCUITS

To establish the one-to-one mapping to the tight-binding
model, we conducted our experiment using electrical circuits
(see Appendix B for details). Figure 2(a) shows the schematic
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FIG. 3. Impedance spectrum and voltage distribution in C6-, C4-,
and C3-symmetric circuits. (a)–(c) Simulated impedance between the
ground and the center node. The circuits are (a) C6, (b) C4, and (c)
C3 symmetric with Frank angles of 0, 2π/3, and π , respectively.
The irreps are labeled for the spectral flows. (d)–(f) Experiment and
simulation results of the impedance spectrum at λ = 0.37, 0.45, and
1. (g)–(i) Simulated (left) and experimental (right) results of the
voltage distribution at the resonance frequency. A voltage source
with an amplitude of Vs is applied between a node at the disclination
core (green arrow) and the ground.

of a circuit with a C5-symmetric lattice which was realized
on a two-layer printed circuit board. The capacitors or in-
ductors are placed on the top or bottom layer, as shown in
Figs. 2(b) and 2(c), with the couplings controlled by the
capacitors between the nodes. In Fig. 2(d), we present the
impedance spectrum obtained by simulating C5-symmetric
circuits using COMSOL MULTIPHYSICS, where the impedance
bands in electrical circuits appear upside down compared to
those in the tight-binding model. The correspondence between
the impedance bands and the eigenvalue of J (λ, ω) is given
in Fig. 9 in Appendix B. The measured impedance spectra
between a node in the core and the ground are shown in
Fig. 2(e), along with the simulation results. The experimental
data show great agreement with the simulation results. To
visualize the eigenstates, we stimulated them by inputting
the voltage signal at peak frequencies into one node in the
core (green arrow). The simulated and measured voltage
field distributions are shown in Fig. 2(f), and they match
the symmetries of the corresponding irreps, confirming the
appearance of topological states and spectral flow of irreps
1E2

2E2 at disclination. Although the circuit model here sup-
ports only positive λ with the basic modes, it is possible to
achieve negative λ in p-orbital bands in more complex circuit
models (Fig. 10 in Appendix B).

Figure 3 presents the simulated [Figs. 3(a)–3(c)] and ex-
perimental [Figs. 3(d)–3(f)] results of impedance and voltage
measurements [Figs. 3(g)–3(i)] in topolectrical circuits with
C6, C4, and C3 symmetries. The measured impedance spec-
tra at λ = 0.37 and λ = 0.45 reveal the presence of spectral
flows, which is further confirmed by examining the field
distribution at the peak frequency. In the C6-symmetric circuit,
two spectral flows of irreps B and 1E2

2E2 are observed,
characterized by odd and even field distributions under C2,
respectively. The C4-symmetric circuit features a spectral flow
of irrep B with even field distribution under C2 and discli-
nation states of irreps 1E1

2E1 that exhibit chiral symmetry
at λ = 1 but disappear into the bulk as λ decreases. The
C3-symmetric circuit is characterized by disclination states
of irreps 1E2E in the band gap. These experimental results
confirm the theoretical model in Fig. 1 and provide a compre-
hensive understanding of topological states and spectral flows
in Wannierizable systems with disclinations.

IV. CONCLUSIONS

In conclusion, we successfully demonstrated the exis-
tence of topological states and spectral flows at disclinations
of OAL phases. Our results, manifested by topolectrical
circuits, provide insight into the real-space topology and spec-
tral signatures of disclination states. The introduced twisted
boundaries serve as a probe for detecting orbitals at Wyck-
off positions and further provide an approach for controlling
localized states at disclinations. In addition, the relation be-
tween the real-space topology and disclination states can be
explored in three- or fractional-dimensional systems, which
may exhibit intriguing properties of spectral flows.

The spectral flow could also potentially occur through the
implementation of Kekulé modulation, which involves polar
parameters. Consequently, the spectral flow of corner states
may merge into a vortex defect state, leading to the emergence
of Majorana-like zero modes [35]. In our study, we created lat-
tice defects through disclination, which does not involve polar
parameters. Moreover, the bound states do not originate from
corner states due to the trivial topology of reciprocal space.
The disclination states were ensured by lattice symmetry and
characterized by real-space topology.
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APPENDIX A: TIGHT-BINDING MODEL AND
ROBUSTNESS OF SPECTRAL FLOWS

1. Real-space invariants as indicators of spectral flows

We introduce a tight-binding model for a honeycomb lat-
tice with Kekulé modulation. The primitive lattice vectors are
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a1 = (a, 0) and a2 = (a/2,
√

3a/2), where we set a = 1 in the
following. The basis is referred to the wave functions of sites

1 to 6 in Fig. 1(a). The Bloch Hamiltonian considering the
nearest-neighbor hopping is

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 t1 0 t2ei(kx/2−√
3ky/2) 0 t1

t1 0 t1 0 t2e−i(kx/2+√
3ky/2) 0

0 t1 0 t1 0 t2e−ikx

t2ei(−kx/2+√
3ky/2) 0 t1 0 t1 0

0 t2ei(kx/2+√
3ky/2) 0 t1 0 t1

t1 0 t2eikx 0 t1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where t1 and t2 are intracell and extracell couplings and kx

and ky are components of Bloch wave vector k. Here, t1
and t2 are negative. The band structures of two topologically
distinct phases with |t1| > |t2| and |t1| < |t2| are presented
in Figs. 1(b) and 1(c) in the main text. The corresponding
irreducible representations for the high-symmetry points of
the Brillouin zone are provided in Table I. The topology of a
gapped band structure is characterized by the symmetry data
vector B, which is a linear combination of elementary band
representations (EBRs),

B =
∑

i

piEBRi. (A2)

TABLE I. Character tables for the point group of p6mm and its
relevant little groups. The first column gives the standard name (SN)
of representation (Rep) according to Altmann-Herzig notation [36],
and the second column gives the name at the high-symmetry points
(HSP) in the Brillouin zone.

C6v (6mm), 	 point

Rep

SN HSP E c6 c3 c2 m1̄2 m10

A1 	1 1 1 1 1 1 1
A2 	2 1 1 1 1 −1 −1
B2 	4 1 −1 1 −1 −1 1
B1 	3 1 −1 1 −1 1 −1
E1 	6 2 −1 −1 −2 0 0
E2 	5 2 1 −1 2 0 0

C3v (3m), little group for the K point

Rep

SN HSP E c3 m1̄2

A1 K1 1 1 1
A2 K2 1 1 −1
E K3 2 −1 1

C2v (2mm), little group for the M point

Rep

SN HSP E c2 m1̄2 m10

A1 M1 1 1 1 1
A2 M2 1 1 −1 −1
B1 M3 1 −1 1 −1
B2 M4 1 −1 −1 1

A complete list of the spinless EBRs for p6mm with
time-reversal symmetry and without spin-orbit coupling is
presented in Table II. The decomposition of the three lower
bands according to Table II are

(A1)1a ⊕ (E1)1a for |t1| > |t2|,
(A1)3c for |t1| < |t2|. (A3)

The integer decomposition for |t1| > |t2| corresponds to
Wyckoff position 1a, while the integer decomposition for
|t1| < |t2| corresponds to Wyckoff position 3c. The EBRs
indicate the presence of two obstructed atomic limit (OAL)
topological phases, where the Wannier charge centers are
located away from the lattice sites. The nontrivial real-space
invariants (RSIs) determining the imbalance in multiplicities
of irreps are (δ1, δ2, δ3)1a = (0,−1,−1) for |t1| > |t2| and
δ3c = −1 for |t1| < |t2|.

Following the character tables of rotation groups Cn pre-
sented in Table III, we determine the RSIs under twisted
boundaries. The location of orbitals at different Wyckoff po-
sitions can be probed by introducing the C2 twisted boundary.
When the C2 twisted boundary is introduced into the C6v

system, the irreps of C6v can be reduced to C2 as

A1 ↓ 2 = A, A2 ↓ 2 = A, B1 ↓ 2 = B,

B2 ↓ 2 = B, E1 ↓ 2 = 2B, E2 ↓ 2 = 2A. (A4)

TABLE II. Elementary band representations (EBRs) for p6mm.
The first column denotes the EBR as (R)l . R is the irreducible repre-
sentation of the orbital that induced the EBR. l denotes the maximal
Wyckoff position where the orbital is located.

EBR 	 K M

(A1)1a 	1 K1 M1

(A2)1a 	2 K2 M2

(B1)1a 	4 K2 M4

(B2)1a 	3 K1 M3

(E1)1a 	6 K3 M3 ⊕ M4

(E2)1a 	5 K3 M1 ⊕ M2

(A1)2b 	1 ⊕ 	4 K3 M1 ⊕ M4

(A2)2b 	2 ⊕ 	3 K3 M2 ⊕ M3

(E )2b 	5 ⊕ 	6 K1 ⊕ K2 ⊕ K3 M1 ⊕ M2 ⊕ M3 ⊕ M4

(A1)3c 	1 ⊕ 	5 K1 ⊕ K3 M1 ⊕ M3 ⊕ M4

(A2)3c 	2 ⊕ 	5 K2 ⊕ K3 M2 ⊕ M3 ⊕ M4

(B1)3c 	3 ⊕ 	6 K1 ⊕ K3 M1 ⊕ M2 ⊕ M3

(B2)3c 	4 ⊕ 	6 K2 ⊕ K3 M1 ⊕ M2 ⊕ M4
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TABLE III. Character tables of rotation groups for twisted
boundaries. In each table, symbols in the first column use Altmann-
Herzig notation.

C2

Rep 1 2

A 1 1
B 1 −1

C3

Rep 1 3+ 3−

A 1 1 1
2E 1 ei 2π

3 e−i 2π
3

1E 1 e−i 2π
3 ei 2π

3

C4

Rep 1 4+ 2 4−

A 1 1 1 1
B 1 −1 1 −1
1E 1 −i −1 i
2E 1 i −1 −i

C5

Rep 1 5+ (5+)2 (5−)2 5−

A 1 1 1 1 1
1E1 1 e−i 2π

5 e−i 4π
5 ei 4π

5 ei 2π
5

2E1 1 ei 2π
5 ei 4π

5 e−i 4π
5 e−i 2π

5

1E2 1 e−i 4π
5 ei 2π

5 e−i 2π
5 ei 4π

5

2E2 1 ei 4π
5 e−i 2π

5 ei 2π
5 e−i 4π

5

C6

Rep 1 6+ 3+ 2 3− 6−

A 1 1 1 1 1 1
B 1 −1 1 −1 1 −1
1E1 1 e−i π

3 e−i 2π
3 −1 ei 2π

3 ei π
3

2E1 1 ei π
3 ei 2π

3 −1 e−i 2π
3 e−i π

3

1E2 1 ei 2π
3 ei 4π

3 1 ei 2π
3 ei 4π

3

1E2 1 e−i 2π
3 e−i 4π

3 1 e−i 2π
3 e−i 4π

3

The reduced RSIs with a C2 twisted boundary are

δ′
1a = 1, δ′

3c = 0 for |t1| > |t2|,
δ′

1a = 0, δ′
3c = −1 for |t1| < |t2|, (A5)

where δ′ = −m(A) + m(B). The spectral flows for the C2-
symmetric twisted boundary with the symmetry center at
Wyckoff positions 1a and 3c are observed in Fig. 4.
The spectrum at λ and −λ is symmetric under C2. Along the
path (λ = 1) → (λ = −1), the irrep of spectral flow from the
upper bulk bands to the lower bulk bands is A or B for a twisted
boundary with the symmetry center at 1a or 3c, depending on
the sign of the RSIs.

When the C6 twisted boundary is introduced into the C6v

system, the irreps of C6v can be reduced to C6 as

A1 ↓ 6 = A, A2 ↓ 6 = A, B1 ↓ 6 = B, B2 ↓ 6 = B,

E1 ↓ 6 = 1E1
2E1, E2 ↓ 6 = 1E2

2E2 . (A6)

FIG. 4. (a) and (b) C2-symmetric twisted boundary with the sym-
metry center at the (b) 1a and (c) 3c maximal Wyckoff positions. The
shaded regions transform into each other under rotation. The hopping
strengths are multiplied by λ (red bonds) between regions. (c) and
(d) Spectral flow under a C2-symmetric twisted boundary with the
symmetry center at (c) 1a and (d) 3c. The bulk band gap is between
the green horizontal lines.

The reduced RSIs are (δ1, δ2, δ3)1a = (0,−1,−1) for |t1| >

|t2| and (δ1, δ2, δ3)1a = (0, 0, 0) for |t1| < |t2|. While the spec-
trum of the OAL(1a) phase with |t1| > |t2| is shown in the
main text, here, we show the spectrum of the OAL(3c) phase
with |t1| < |t2| for comparison in Fig. 5(a), where no spectral
flow is present in the band gap. This topological feature is in-
herited in the C5-symmetric lattice with disclination, as shown
in Fig. 5(b). The spectral flows of disclination states in the C4-
and C3-symmetric lattices give similar results. By counting the
imbalance in multiplicities of irreps, the RSIs describing the
spectral flows in lattices with disclination are summarized in
Table IV.

2. Robustness of spectral flows

We investigated the robustness of spectral flows induced
by real-space topology in the C5-symmetric lattice by adding

FIG. 5. Local density of states in the tight-binding model for
the OAL(3c) phase with |t1| < |t2| as a function of the hopping
multiplication factor λ. (a) C6-symmetric twisted boundary without a
disclination. (b) C5-symmetric twisted boundary with a disclination
of Frank angle π/3. The symmetry center of the twisted boundary is
located at the 1a maximal Wyckoff position.
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TABLE IV. Real-space invariants without spin-orbit coupling counting the imbalance in multiplicities of the irreps.

Space group Without time-reversal symmetry With time-reversal symmetry

2 δ = −m(A) + m(B) δ = −m(A) + m(B)

3
δ1 = −m(A) + m( 1E ) δ = −m(A) + m( 1E 2E )
δ2 = −m(A) + m( 2E )

δ1 = −m(A) + m( 1E ) δ1 = −m(A) + m( 1E 2E )
4 δ2 = −m(A) + m(B) δ2 = −m(A) + m(B)

δ3 = −m(A) + m( 2E )

δ1 = −m(A) + m( 1E1) δ1 = −m(A) + m( 1E1
2E1)

5
δ2 = −m(A) + m( 1E2) δ2 = −m(A) + m( 1E2

2E2)
δ3 = −m(A) + m( 2E2)
δ4 = −m(A) + m( 2E1)

δ1 = −m(A) + m( 1E1) δ1 = −m(A) + m( 1E1
2E1)

δ2 = −m(A) + m( 2E2 ) δ2 = −m(A) + m( 1E2
2E2)

6 δ3 = −m(A) + m(B) δ3 = −m(A) + m(B)
δ4 = −m(A) + m( 1E2)
δ5 = −m(A) + m( 2E1)

δ1 = −m(A1) − m(A2) + m(E1) δ1 = −m(A1) − m(A2) + m(E1)
6mm δ2 = −m(A1) − m(A2) + m(E2) δ2 = −m(A1) − m(A2) + m(E2)

δ3 = −m(A1) − m(A2) + m(B1) + m(B2) δ3 = −m(A1) − m(A2) + m(B1) + m(B2)

a uniformly random distribution of on-site energy within an
absolute value of 0.5 to lattice sites. As shown in Fig. 6,
the gapless spectral flows remain robust with random on-site
energy, while the disclination states may disappear at λ = 1.
In Fig. 6(a), the symmetries of eigenstates are maintained
while keeping the C5 symmetry of the lattice. In Fig. 6(b),
the eigenstates have no symmetry as completely random on-
site energy is added, resulting in the splitting of degenerate
states.

The existence of Wannier orbitals gives rise to the topo-
logical states at the disclination core. Here, we remove the
core atoms of the C6-symmetric lattice without a disclination
[Fig. 7(a)] and the C4-symmetric lattice with a 2π/3 discli-
nation [Fig. 7(b)]. The spectral flows and disclination states
vanish in the OAL(1a) phase, as shown in Figs. 7(c) and 7(d).
The removal of the core atoms induces a separation of the
charge associated with the Wannier center in the OAL(3c)
phase. As a result, higher-order states are observed around

FIG. 6. Spectral flows with random on-site energy. (a) The C5

symmetry of the lattice is maintained while adding random on-site
energy. (b) Completely random on-site energy is added to the lattice
sites.

the core in both lattices, as shown in Figs. 7(e) and 7(f). The
spectral flows induced by the orbital of the core atoms vanish
in the band gap.

We also investigated the spectral flows in lattices with
negative Frank angles. The local densities of states for a C7-
symmetric lattice with a negative Frank angle of −π/3 and a
C8-symmetric lattice with a negative Frank angle of −2π/3
are shown in Figs. 8(a) and 8(b), respectively. The topological
states behave similarly, with the disclination states having
irreps of angular momentum l = ±1, while other irreps with
l �= ±1 form gapless spectral flows.

APPENDIX B: TOPOLECTRICAL CIRCUIT MODEL

1. Experiment realization in topolectrical circuits

The behavior of an LC circuit is governed by the cir-
cuit Laplacian according to Kirchhoff’s rule, I(λ, ω) =
J (λ, ω)V(λ, ω), where I denotes the current input and V is
the voltage against ground at each node. The components
of the circuit Laplacian are analogous to the tight-binding
Hamiltonian and are written as

Jaa(λ, ω) =
∑
b�=a

iωCab(λ) − i

ωLa
,

Jab(λ, ω) = −iωCab(λ). (B1)

Here, Jaa and Jab correspond to the on-site term and the
hopping between sites, and Cab(λ) denotes the capacitors
connecting different sites. We accessed the impedance Zab

between two nodes a and b in experimental measurements,
which is given by

Zab = Gaa + Gbb − Gab − Gba, (B2)

where G(λ, ω) = J−1(λ, ω) is the circuit Green’s function.
The impedance is dominated by the smallest eigenvalue
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FIG. 7. Tight-binding model of (a) a C6-symmetric lattice without a disclination and (b) a C4-symmetric lattice with a 2π/3 disclination.
Local density of states at the unit cell in the dashed area for (c) and (d) the OAL(1a) phase with |t1| > |t2| and (e) and (f) the OAL(3c) phase
with |t1| < |t2|. We neglect the shifting of on-site energy here.

jn(λ, ω) of J (λ, ω) at a given frequency and maps to the local
density of states in the tight-binding model. In the experiment,
the values of C1 and C2 are 2.2 and 1 nF, respectively. For
hopping multiplication factors λ = 0.37, 0.45, and 1, we use
capacitors of 820 pF, 1 nF, and 2.2 nF, respectively, with a
tolerance of ±1%. The on-site energy is determined by the
inductors L (1 μH, ±5% tolerance) between the nodes and
the ground, and the resonance frequency is defined as f0 =
[2π

√
L(2C1 + C2)]

−1
. In the theoretical results, we applied

a correction factor of 1.06 for L to account for the spurious
inductive coupling between the inductors. We used a series

FIG. 8. Topological states and spectral flows in lattices with neg-
ative Frank angles. (a) C7-symmetric lattice with a Frank angle of
−π/3 and (b) C8-symmetric lattice with a Frank angle of −2π/3.

resistance of 450 m� for the inductor in simulation to fit the
impedance peak observed in the experiment. We used a net-
work analyzer (Keysight E5061B) to perform the impedance
and voltage measurement.

An impedance peak appears when a zero eigenvalue exists
in the admittance band structure at a given frequency. The
spectrum for admittance band jn(λ, ω) at frequency 1.097 f0

is shown in Fig. 9(a), where the eigenstates of irreps 1E2
2E2

cross zero at λ = 0.37. For a certain hopping multiplication
λ, the eigenvalues follow jn(λ, ω) + 1

ωL ∝ ω. The dispersion
of jn(λ, ω) with λ = 0.37 is shown in Fig. 9(b). Starting with

FIG. 9. (a) Theoretical spectrum of the circuit Laplacian eigen-
value of J (λ, ω) as a function of the hopping multiplication factor
λ. The frequency is fixed at 1.097 f0. (b) Theoretical spectrum of
J (λ, ω) as a function of frequency at λ = 0.37. Isolate eigenvalues
with small J contribute to the large impedance in the spectrum.
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all jn(λ, ω) < 0 for small ω, the increasing frequency causes
jn(λ, ω) to cross zero from higher to lower bands. Therefore,
the impedance bands in circuits appear upside down compared
to the tight-binding model.

2. Circuit model with negative coupling

While the circuit model in the main text supports only
positive λ with basic modes, here, we achieve negative λ in
p-orbital bands in the circuit model. To achieve negative cou-
pling between different sites, the phase of the signal should be
inverted while propagating through the sample. Figure 10(a)
shows a schematic of the C5-symmetric lattice, where the sym-
metric capacitive interconnections at twisted boundaries are
twisted. The circuit Laplacian eigenvalues are composed of s-
and p-orbital bands, corresponding to positive and negative λ,
as shown in Fig. 10(b). The simulated impedance spectrum
demonstrates the spectral flow of irrep A corresponding to
negative λ while the series resistance of L is very low, as
shown in Fig. 10(c). The quality factor of p-orbital bands
(associated with negative λ) is significantly lower than that
of s-orbital bands (associated with positive λ). Boosting the
quality factor calls for circuit elements with exceptional preci-
sion and significantly reducing the resistance. However, such
requirements, particularly in terms of the inductance we can
source, far exceed our current experimental capabilities.

FIG. 10. (a) Circuit model of the C5-symmetric lattice with a
disclination achieving negative λ at p-orbital bands. (b) Theoret-
ical spectrum of the circuit Laplacian eigenvalue. (c) Simulated
impedance between the ground and the node closest to the center
of the electric circuit. The spectral flow of irrep A corresponds to
negative λ, while 1E2

2E2 corresponds to positive λ. Here, C0 is 3.3
nF, the series resistance of L is 150 m�, and the other parameters are
the same as in the main text.
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