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Recent breakthroughs in topological Anderson insulators (TAIs) have revealed the counterintuitive possibility
that sufficiently strong disorder can induce nontrivial topology from a trivial phase. Previous experimental
research on TAIs has mainly focused on Chern-type and higher-order systems. However, the observation of
spin-Chern-type TAI hosting disorder-induced spin-dependent boundary states remains unexplored. Here, we
report on the experimental realization of a spin-Chern-type TAI in a two-dimensional bilayer phononic crystal.
We directly observe evidence of TAI through disorder-induced pseudospin-dependent helical boundary modes
from a trivial insulator and further demonstrate their robustness. By extending topological descriptions to
disordered supercells and capturing the spin-Bott index, we confirm the topological Anderson phase transition.
This work opens different perspectives for the realization of interesting topological phases in optics, circuits, and
cold atom systems.
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Introduction. Topological insulators (TIs) have been a topic
of ongoing fascination in recent years due to their ability to
support ideal propagation and their potential to revolutionize
future devices. Topological gapless boundary states which
arise from the nontrivial bulk topology of TIs have been ob-
served in various systems, including condensed matter [1,2],
optics [3–5], acoustics [6,7], mechanics [8,9], and cold atoms
[10,11]. For TIs, their robustness against weak perturbations
is at the heart of this topological phenomenon, but their ro-
bust transmission still cannot survive the destruction of strong
disorder and is limited to an interesting phenomenon, known
as Anderson localization [12–14]. However, recent research
suggests that disorder may not always hinder topologically
protected transmission, which has led to the proposal of topo-
logical Anderson insulators (TAIs) [15–18].

The discovery of TAIs can be traced back to the numerical
research of disordered two-dimensional (2D) HgTe/CdTe
quantum wells by Li et al. [15], which came as a surprise
to the field of topological physics [19–22]. Simulated
results showed a disorder-driven topological phase from
a metallic phase. This novel quantum phase possesses a
pair of disorder-induced helical edge states with opposite
spins moving around the boundary in opposite directions,
similar to a quantum spin Hall effect. Over the past decade,
TAIs have attracted enormous interest and inspired extensive
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theoretical explorations in various topological systems,
including spin-Chern-type [23–27] and Chern-type systems
[28,29]. However, TAIs have been difficult to experimentally
realize due to the lack of experimental schemes and real
materials. To date, several TAIs have been observed in
acoustic signals [30], cold atom wires [31], and photonic
[32,33] and circuit systems [34], which are mainly limited
to Chern-type and higher-order systems. Despite TAIs
receiving considerable attention, a TAI with disorder-induced
spin-dependent helical boundary states has yet to be reported
experimentally.

In this Letter, we report the experimental realization of a
spin-Chern-type TAI in a 2D bilayer phononic crystal. By in-
troducing on-site energy disorder, we observed the emergence
of a pair of pseudospin-dependent helical boundary states
from a trivial phase, which is the hallmark of a spin-Chern-
type TAI. We further demonstrated the topological properties
of these disorder-induced boundary states, including their ro-
bust and pseudospin-dependent unidirectional propagations.
Furthermore, we present evidence of a topological Ander-
son phase transition by extending topological descriptions to
disordered systems. Our work offers a pathway to explore
different disorder-driven topological phases and is expected
to inspire further research in optics, circuits, and cold atom
systems.

Model and methods. To illustrate the mechanism of a TAI
in acoustic systems, we constructed a tight-binding model
on a bilayer Lieb lattice. The supercell contains three types
of atoms in each layer, denoted by A (red sphere), B (blue
sphere), and C (green sphere), as shown in Fig. 1(a). The

2469-9950/2023/108(16)/L161410(5) L161410-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4193-4531
https://orcid.org/0000-0002-7898-4148
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.L161410&domain=pdf&date_stamp=2023-10-20
https://doi.org/10.1103/PhysRevB.108.L161410


HUI LIU et al. PHYSICAL REVIEW B 108, L161410 (2023)

FIG. 1. Spin-Chern TAI in a bilayer Lieb lattice model.
(a) Schematic illustration of a TAI model in the presence of uni-
form on-site energy disorder. The inset shows one of the unit cells.
(b) Band structure for TI by taking t0 = −2, tc = −0.25, and m = 0.
(c) Band structure for the trivial insulator by increasing m to 0.35.
(d) Calculated energy eigenvalues for TAI with an on-site energy
disorder strength w = 1 in a 21 × 21 supercell with PBCs (gray dots)
and HBCs (dark blue dots).

tight-binding Hamiltonian for the bilayer Lieb lattice model
is given by

H =
∑

i∈{A,B,C},μ
Ui,μc†

i,μci,μ + t0
∑

〈i, j〉,μ
c†

i,μc j,μ

+ tc
∑

〈〈i, j〉〉,μ
{[μ(ni j · ez ) + 1]/2}c†

i,μc j,−μ, (1)

Ui∈A;μ = −(m + Udis), Ui∈B,C;μ = m + Udis, (2)

where c†
i,μ = (c†

i,1, c†
i,−1) are creation operators on the

up/down layer at sites i. The first term is the on-site energy
Ui,μ, composed of an initial on-site energy m and on-site
energy disorder Udis for each atom. The second and the last
term represent the nearest- and next-nearest-neighbor hop-
ping, respectively. In these terms, 〈i, j〉 and 〈〈i, j〉〉 run over
all the nearest- and next-nearest-neighbor sites with hopping
strengths t0 and tc, respectively. ni j = eik × ek j denotes the
unit vector connecting next-nearest-neighbor sites where k is
the unique intermediate site between i and j. A schematic
depiction of the TAI model is given in Fig. 1(a), where on-site
disorder is introduced into each atom of a trivial supercell and
represented by the size of the sphere. When on-site energy dis-
order is strong enough, this model exhibits the hallmark of a
TAI, i.e., the emergence of disorder-induced boundary modes
with pseudospin-up and pseudospin-down polarizations rep-
resented by red and blue arrows on the hard boundaries.

The construction of an acoustic topological Anderson
phase can be qualitatively understood by the tight-binding
model. This model is equivalent to a spin-Chern insulator for
the disorder-free case (Udis = 0) [7]. The layer pseudospin and
chiral coupling provide synthetic spin-orbit coupling, leading
to a nontrivial topology described by a nonzero spin-Chern
number Cs = 1. The projected band structure is shown in

Fig. 1(b), where a pair of spin-momentum locking boundary
states, denoted by red and blue lines, exist within the topo-
logical gap. When the initial on-site energy m increases, the
effect of synthetic spin-orbit coupling is suppressed by a large
on-site energy difference, forcing the system into a trivial
phase (Cs = 0). The projected band structures are plotted in
Fig. 1(c), where the gap is trivial and does not support any
edge modes. However, an increase in on-site energy disor-
der can weaken the effect of the on-site energy difference,
allowing the system to reenter the topological phase. We in-
troduced random on-site energy disorder Udis = [−w/2,w/2]
to each atom of the 21 × 21 supercell model, where w is the
disorder strength. As the disorder strength increases to 1, a
trivial gap may close and a nontrivial gap may open, as shown
in Fig. 1(d). The eigenenergy of the supercell with periodic
boundary conditions (PBCs) presents a gap, denoted by the
blue area. The energy spectrum with hard boundary conditions
(HBCs) confirms the disorder-induced phase transition, char-
acterized by the occurrence of pairs of topological edge modes
within the gap region. Similarly, introducing disorder into the
chiral coupling can enhance synthetic spin-orbit coupling and
lead to a TAI. However, a TAI cannot be driven by disordered
types that cannot cause topological phase transitions, such as
in-plane coupling t0. Further details can be found in Supple-
mental Material (SM) Notes 1 and 2 [35].

To identify the nontrivial topology in a TAI without a well-
defined band structure, we extend the topological description
to real space and capture the topological invariant using the
spin-Bott index. We introduce a pseudospin operator τμ =
σμ ⊗ IN , where the Pauli matrices σμ act as the layer degree
of freedom and N is the number for one-intralayer atoms. The
Hamiltonian of the supercell can be expressed as a block ma-
trix by setting PBCs, which allows us to extract the synthetic
spin-orbit coupling and the spin-mixing term contributed by
the chiral coupling. Owing to the existence of the spin-mixing
term, τμ is not commutative with H , indicating the pseudospin
nonconservation of the system. Nevertheless, we can define a
pseudospin space of σy based on the layer and split the bulk
states below the gap into pseudospin-up and pseudospin-down
groups by projection, as long as the spin-mixing term is not
large (see SM Note 3 for details [35]). The split pseudospin-
dependent groups allow us to obtain the spin-Bott index,
which describes the topological properties of the supercell.
As the spin-Bott index does not depend on any symmetries
and pseudospin conservation, it is an effective tool for mea-
suring topology based on real space. Similar to the spin-Chern
number, the spin-Bott index relies on the presence of both a
complete bulk gap and a spin-projection gap. Details of the
spin-Bott index calculation are provided in SM Note 4 [35].

To transplant from the tight-binding model to a concrete
acoustic structure, we need to find a unit geometry where the
variation of on-site energy satisfies the formation mechanism
of a TAI. The unit cell with a bilayer Lieb lattice is shown
in Fig. 2(a), where square scatterers with width l = 14.4 mm
and height h1 = 8.4 mm create a Lieb lattice at each layer. The
interlayer couplings that connect two air layers are realized
by four chiral tubes with diameter d = 3.3 mm and height
h2 = 9.6 mm. The square unit cell hosts the lattice constant
a = 24 mm and total height h = 26.4 mm. The top view of
the unit structure is shown in the inset, where square scatterers
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FIG. 2. Structural implementation of acoustic spin-Chern TAI
and the band structure for two disorder-free phases. (a) Unit cell
of an acoustic TAI, composed of two air layers with scatterers and
four chiral tubes. The inset shows the top view of the TAI cell
structure with scatterers rotating at random angles uniformly dis-
tributed between θ0 − θd/2 and θ0 + θd/2. Air fills the entire blue
area. (b) The complete gap of the disorder-free unit cell is represented
as a function of θ0. (c) The bulk band structure and (d) the projected
band dispersions for a TI with θ0 = ±45◦ and θd = 0◦. (e) The bulk
band structure and (f) the projected band dispersions for a trivial
insulator with θ0 = 0◦ and θd = 0◦.

with hard boundaries in the upper and lower air layers rotate
simultaneously. The rotation angles between the diagonal of
the square scatterers and the y direction are defined as θ =
θ0 + θd R, where θ0 is the initial rotation angle, θd is the mod-
ulation parameter representing disorder strength, and R is a
random number with a uniform distribution within [−0.5, 0.5]
applied independently to each unit cell. Although the rotation
of the scatterers changes all the in-plane parameters, including
the on-site energy and the in-plane coupling, only the modu-
lation of on-site energy leads to a topological phase transition.
In the structure design, we mainly rely on two key ingredients:
synthetic spin-orbit coupling induced by a bilayer lattice and
chiral air tubes, and on-site energy modulated by rotating
square scatterers.

The formation of TAI requires two distinct phases. The
topological phase is ensured by the synthetic spin-orbit cou-
pling. The trivial phase occurs when the spin-orbit coupling
is covered by the on-site energy difference introduced by the
initial rotation angle θ0 of the scatterers. For the disorder-
free case (θd = 0), we focus on a complete gap between the
first/second and third/fourth bands of the system. Figure 2(b)
shows the simulated complete gap as a function of θ0, where a
topological gap (Cs = 1) denoted by the pink area closes and
a trivial gap (Cs = 0) denoted by the blue areas opens, as the
rotation of θ0 from −45◦ to 0◦ increases the on-site energy
difference. The gap closes at θ0 = ±10.5◦, indicating a phase
transition and band inversion. Since the on-site energy in the
real acoustic structure cannot achieve infinite change without
destroying the lattice, the on-site energy in the TAI structure
is designed to change only within a certain range. Thus, as θ0

further increases from 0◦ to 45◦, the on-site energy decreases,
and the system returns to the topological phase. The rotation
of the scatterers with θ0 changes both the on-site energy differ-
ence and the in-plane coupling, ensuring a topological phase

transition and a complete gap, respectively. The topological
properties of these distinct phases can be further investigated
by the band structures with specific initial rotation angles. For
a topological phase with θ0 = ±45◦, the simulated bulk band
structure along high-symmetry lines is displayed in Fig. 2(c).
A double Dirac cone at point M opens and a completely
topological band gap denoted by the blue area arises, owing
to the chiral interlayer coupling and minimum on-site energy
difference. The relevant projected band dispersions along kx

are shown in Fig. 2(d), with the experimental dispersion ob-
tained by a Fourier transform in color maps and simulated
results in overlaid lines. A pair of boundary states with the
pseudospin-up and psueodspin-down polarization exist in the
topological gap, represented by orange and green lines. The
pseudospin-up polarized boundary state is experimentally ex-
cited and agrees well with the simulation. When θ0 = 10.5◦,
the increasing on-site energy difference counteracts the effect
of the synthetic spin-orbit coupling, closing the topological
band gap and creating a double Dirac cone occurs at point M.
For the trivial case with θ0 = 0◦, the maximum on-site energy
difference opens a trivial gap indicated by the pink area in
Fig. 2(e). The projected band dispersions in Fig. 2(f) show a
complete trivial band gap without any modes. Starting from
this trivial phase, we will demonstrate how a global change in
the on-site energy difference can induce a topological phase
transition by disorder.

Experimental realization in a phononic crystal. The three-
dimensional (3D) printed TAI sample with 21 × 21 unit cells
consists of a bilayer Lieb lattice with rotated scatterers and
interlayer chiral air tubes, as shown in Fig. 3(a). More details
about the experimental setup and TAI sample can be found
in SM Note 5 [35]. By increasing the disorder strength θd ,
the on-site energy difference can be weakened and the trivial
phase can transform into the topological regime. An Anderson
phase diagram as a function of the initial angle θ0 and disorder
strength θd is given in Fig. 3(b), where each data point is
the average of the spin-Bott index for more than ten acoustic
supercells with 11 × 11 unit cells. This average phase diagram
shows the general phase transition trend, that is, strong enough
disorder can take the system from the trivial phase (pink area)
to the topological phase (blue area). However, it cannot bring
the system back to the trivial phase because the disorder intro-
duced by rotated scatterers cannot indefinitely increase. This
phase diagram provides evidence for the existence of a TAI.

We further investigate the process of a disorder-induced
phase transition, denoted by the green arrow in Fig. 3(b),
by observing the appearance of a pair of disorder-induced
edge states in a TAI sample with 21 × 21 unit cells. The
topological Anderson phase driven by random rotating scat-
terers arises from an on-site energy disorder varying within a
certain range (see SM Note 6 for more details [35]). The TAI
sample was fabricated by applying sufficiently strong disorder
θd = 180◦ to a trivial phase with initial rotation angle θ0 = 0◦
in Figs. 2(e) and 2(f). The simulated eigenfrequencies of the
TAI sample with PBCs and HBCs are displayed in Fig. 3(c).
The energy spectrum with PBCs has a topological gap (7166–
7561 Hz) denoted by the blue area. Several pairs of boundary
states exist within the gap region of the energy spectrum with
HBCs, indicating that the nontrivial topological properties are
driven from the trivial phase by disorder. The pseudospin
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FIG. 3. Topological Anderson phase and disorder-induced
pseudospin-dependent helical boundary modes. (a) A photograph of
the TAI sample with θ0 = 0◦ and θd = 180◦. The small holes in the
upper layer are reserved for measurement, and the cylindrical holes
outside the structure are used to hold the sample. (b) Simulated TAI
phase diagram as a function of θ0 and θd simulated in supercells
with 11 × 11 unit cells. (c) Simulated eigenfrequency for the TAI
sample with 21 × 21 unit cells in the presence of PBCs (gray dots)
and HBCs (dark blue dots). The red and blue in the color map
denote pseudospin up and pseudospin down, respectively. (d)–(f)
Experimental acoustic fields of the TAI sample excited at 6700, 7300,
and 7900 Hz, mapping to a bulk mode, boundary modes, and a bulk
mode, respectively. A pair of boundary modes at the gap frequency,
denoted by the orange and green arrows, respectively, propagate in
different directions along two hard boundaries. (g)–(i) Experimental
acoustic fields of a TAI transmitted around obstacles. The gray lines
represent open boundaries and the others are hard boundaries.

polarization of the boundary eigenmodes, determined by pro-
jecting eigenmodes into pseudospin space, is represented by a
color map. The emergence of pseudospin-dependent helical
boundary states, as another key hallmark of a TAI, can be
observed with midgap excitation at hard boundaries in the
sample.

We measured an acoustic pressure field excited at the
junction of two hard boundaries in the x and y directions.
The results at typical frequencies are shown in Figs. 3(d)–3(f).
The acoustic pressure intensity radiates from the excitation

source to the interior at frequencies of 6700 and 7900 Hz,
showing bulk mode distribution. At a gap frequency of
7300 Hz, the field distribution supports transmissions along
the two hard boundaries, indicating that the on-site energy
disorder weakens the on-site energy difference of the initial
trivial phase and induces a pair of boundary states from a
trivial phase. As the sound intensity decays away from the
boundary, it displays a characteristic behavior of boundary
modes. More details about their pseudospin polarization,
which carries pseudospin up (orange arrow) along the x
direction and pseudospin down (green arrow) along the y
direction, can be found in SM Note 7 [35]. Figures 3(g)–3(i)
demonstrate the robustness of the disorder-induced
pseudospin-dependent boundary state against a rectangular
defect. At a midgap frequency of 7300 Hz, the intensity of
the acoustic field is distributed at the hard boundary and
smoothly propagates around the defect, where backscattering
is apparently suppressed. These experimental results
demonstrate the existence of pseudospin-dependent boundary
states in TAI samples, similar to those in a TI.

Conclusions. In summary, we have observed a spin-Chern-
type TAI in a 2D acoustic system with bosonic time-reversal
symmetry. This TAI is characterized by topological spin-
dependent helical boundary states driven by disorder. The
transition from a trivial phase to a disorder-driven topological
phase has been verified both qualitatively and quantitatively
through the observation of disorder-induced helical boundary
states and the emergence of a topological Anderson phase
transition characterized by the spin-Bott index. Moreover, the
disorder-induced boundary states have been experimentally
proved to be immune to obstacles. Our work differs from ear-
lier studies on TAIs in several ways. First, we experimentally
realize a spin-Chern-type TAI, leading to the observation of a
disordered-induced quantum spin-Hall-like effect. Second, we
experimentally demonstrate that topological Anderson phases
can exist without pseudospin conservation and any symme-
tries. Third, our experiments are conducted in an acoustic
system with bosonic time-reversal symmetry, expanding the
implementation platform of spin-Chern-type TAIs, which may
encourage research and applications of topological phases in
other platforms.
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