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Recently, the topological physics in artificial crystals for classical waves has become an emerging
research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two
layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of
freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a
unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distin-
guished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively.
The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge
states that propagate along the interfaces separating different topological phases. Various applications such
as sound communications in integrated devices can be anticipated by the intriguing acoustic edge states
enriched by the layer information.
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The discovery of topological insulators, signaled by the
presence of symmetry protected edge states, has opened up
new avenues for condensed-matter physics [1–4], because
of great interest in fundamental physics and prospective
applications (e.g., in quantum computing). Recently,
intense efforts have been devoted to realizing classical
analogues of two-dimensional (2D) topological insulators
for photonic, mechanical and sound waves [5–31]. The
macroscopic characteristic plus the flexibly tunable crystal
symmetry enable these classical systems to be good plat-
forms to investigate the topological properties predicted
originally in electronic systems. The topologically pro-
tected edge modes could be particularly attractive to
overcome some disorder-related restrictions in photonic
and acoustic technologies.
Basically, the existing 2D topological insulators for

classical waves can be classified into two groups: those
mimicking integer quantum Hall insulators with broken
time-reversal (TR) symmetry, and those mapping to quan-
tum spin Hall (QSH) insulators with intact TR symmetry.
To break the TR symmetry, magneto-optic effects [5–9],
gyroscopic metamaterials [10,11], and circulating fluid
flows [12–15] have been introduced to the photonic,
mechanical and acoustic systems, respectively. Resorting
to the paraxial approximation in phase modulated wave-
guides [16–18], effective gauge flows have also been used
to simulate the quantum Hall effect. To design classical
QSH insulators, pseudospins must be constructed since the

classical waves lack intrinsic half-integer spins. The early
attempts have been focused on 2D photonic systems, in
which different transverse polarization modes are com-
bined together to mimic the Kramers doublet [19–22].
Similar approaches have been further extended to elastic
[23] and mechanical systems [24]. Recently, degenerated
Bloch modes induced by high crystalline symmetries have
also been proposed to realize pseudospins for polarized
light [25,26] and scalar sound [27–29].
In addition to spin, valley degree of freedom has been

proved to be another controllable degree of freedom for
electrons and recently attracted much interest in 2D layer
structures [32–37]. The nontrivial Berry curvature may also
contribute topological edge transport without breaking TR
symmetry [38–43]. The valley index is easy to migrate to
the classical systems by breaking mirror or inversion
symmetry [44–47]. This provides another efficient recipe
to realize topological edge modes for classical waves
[48–54]. Interestingly, Lu et al. have observed the val-
ley-projected edge transport of sound in a monolayer sonic
crystal (SC) [49], where the topological phase transition is
realized by simply rotating the anisotropic scatterers. In this
Letter, we propose a new strategy to achieve topological
sound transport by designing a bilayer SC (BSC) made of
rotated scatterers. Combining the valley and additional
layer indices together, the unique bilayer system exhibits a
richer topological phase diagram than those explored
previously [27–29,49]. Our analytical model demonstrates

PHYSICAL REVIEW LETTERS 120, 116802 (2018)

0031-9007=18=120(11)=116802(7) 116802-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.116802&domain=pdf&date_stamp=2018-03-15
https://doi.org/10.1103/PhysRevLett.120.116802
https://doi.org/10.1103/PhysRevLett.120.116802
https://doi.org/10.1103/PhysRevLett.120.116802
https://doi.org/10.1103/PhysRevLett.120.116802


that the topological phases can be characterized by two
quantized topological invariants. The presence of nontrivial
acoustic edge modes, either layer mixed or layer polarized,
has been validated numerically and experimentally. As a
manifestation of prospective applications of our bilayer
system, an intriguing interlayer converter has been con-
ceived further for flipping the layer polarization.
As shown in Fig. 1(a), the BSC consists of two layers of

SCs sandwiched between a pair of rigid plates and
separated by a plate penetrated with a honeycomb array
of circular holes. Each layer consists of a hexagonal array
of regular triangular rods. Specifically, we consider the
following geometrical parameters: the volume filling
ratio of the triangular rod R ¼ 0.24, the height of the
rod hrod ¼ 0.5a, the thickness of the middle plate
hplate ¼ 0.1a, and the radius of the hole rhole ¼ 0.1a, with
a being the lattice constant. We use the relative angle α and

the common angle β to characterize the orientations of the
triangular rods in both layers [see Fig. 1(b)]. As shown
below, the combination of the angles ðα; βÞ enables the
BSCs with various types of band structures. The simulation
is performed by COMSOL Multiphysics based on the finite-
element method.
We start from the BSC with α ¼ β ¼ 0. It has been

pointed out that, for a hexagonal monolayer SC with
unrotated triangular rods, Dirac degeneracy emerges at
the Brillouin zone corners K and K0 owing to the protection
of C3v symmetry [55]. Here the dispersion of the BSC
[Fig. 1(c)] exhibits two conic degeneracies, which are
deterministically protected by D3h symmetry that supports
two nonequivalent 2D irreducible representations.
Interestingly, the 2nd and 3rd bands intersect at an
equifrequency ring (i.e., the so-called nodal ring) enclosing
the K point. Here band repulsion does not occur since these
two bands possess opposite mirror eigenvalues about the
middle plane. As the scatterers are rotated, in general, the
point and/or ring degeneracy will be broken due to the
symmetry reduction [see Figs. 1(d)–1(g)]. To explore
acoustic topological insulators, it is crucial to open an
omnidirectional gap, which can be realized by breaking the
nodal ring degeneracy between the 2nd and 3rd bands. This
has already been shown in Fig. 1(e) associated with α ¼ 0,
where the ring degeneracy is lifted beyond a threshold
value of β, and also shown in Figs. 1(f) and 1(g) associated
with α ≠ 0, which breaks the mirror symmetry with respect
to the middle plane.
To further search the angular boundaries that distinguish

different topological phases, in Fig. 2(a) we plot the edge
frequencies for the 2nd and 3rd bands along a represen-
tative angular path. It is observed that an omnidirectional
band gap exists in general, except for the line segment from
(0, 0) to (0, 5.7°) and a crossing point at (6.0°, 8.4°). The
former corresponds to the aforementioned nodal ring
degeneracy, whereas the latter stems from an accidental
Dirac point degeneracy. The study extended to the whole
angular domain gives a reduced phase diagram [Fig. 2(b)],
considering the threefold rotation symmetry of the triangu-
lar rods. The phase diagram is separated by the straight and
curved lines associated with ring and point degeneracies,
respectively. Hereafter, we focus on the topological proper-
ties of the angular regions around the origin point O1, and
the phase domains around the special points O2, O3, and
O4 can be analyzed similarly.
Starting from the unrotated BSC in the absence of

interlayer coupling (Supplemental Material [56]), an effec-
tive Hamiltonian near the K point can be developed to
describe the topological phases around the O1 point. (The
physics in the K0 valley can be derived by considering TR
symmetry.) Spanned by the four degenerate states at the K
point, the perturbation Hamiltonian of the BSC has the form

δH ¼ vDðκxσx þ κyσyÞ þ ηðαsz þ βÞσz − Δcsx; ð1Þ

(a)

(b)

(c) (d) (e)

FIG. 1. (a) Schematic of the coupled BSC of hexagonal lattice.
Air is filled inside the structured channels with hard boundaries.
(b) Side (left) and top (right) views of the unit cell. Specifically,
the angles α and β together characterize the orientations of the
triangular scatterers in both layers. (c) Numerical dispersion for
the BSC with zero angles. Inset: the first Brillouin zone. (d)–
(g) Local views of the band structures for the four BSCs with
specified rod orientations.
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where σi and si are Pauli matrices that label the valley vortex
pseudospin [49,56] and layer pseudospin, respectively, and
ðκx; κyÞ is the wave vector deviated from the K point. In
Eq. (1), the first term gives two overlapped conic dispersions
with velocity vD, the second term describes the band gap
opened by rotating rods, and the final term depicts the
interlayer coupling that contributes to the frequency split.
The parameter η depends on the spatial filling ratio of the
triangular rods, and Δc depends on the detailed geometry of
the holes connecting the bilayers, both of which can be
determined from numerical simulations. From the analytical
model, one may derive a concise formula to characterize the
curved phase boundary [Fig. 2(b)], i.e., β2 ¼ α2 þ η−2Δ2

c.
Specifically,α ¼ 0 andβ0 ¼ �Δc=η correspond to the critical
angles where the nodal ring dispersions exist, which gives the
straight phase boundary. The separated phase domains cor-
respond to either nontrivial acoustic valley Hall (AVH) phases
(shadowed regions) or nontrivial acoustic layer-valley Hall
(ALH) phases (unshadowed regions), distinguished by the
quantized topological invariant CK

V or CK
L (Supplemental

Material [56]). The former is a natural bilayer extension of
the valley Chern number concerned in the monolayer system
[48–54], and the latter identifies the layer information and
resembles that proposed for QSH systems [57,58].
A smoking gun evidence for the topologically distinct

phases is the presence of the edge modes. Figure 3(a) shows
the numerical dispersion for an interface between two

BSCs with rod orientations ð0°;�20°Þ, which belong to
different AVH phases (ΔCK

V ¼ 2). As anticipated from the
bulk-boundary correspondence, two edge modes (red
curves) carrying positive group velocities appear in the
K valley, whose eigenfields disperse in both layers (see
insets) and indicate a mixing of layer pseudospins. In
contrast, Fig. 3(b) shows the interface dispersion for a
system constructed by two BSCs with rod orientations
ð � 10°; 3°Þ, which correspond to topologically distinct
ALH phases (ΔCK

L ¼ 2). Strikingly different from the
AVH case, the two edge modes carry different group
velocities. In particular, the eigenfield concentrates domi-
nantly in either the upper layer or the lower layer.
Therefore, the physics for the specific K valley resembles
the QSH effect in electronic systems; i.e., the edge modes
with different spins counterpropagate. Because of the TR
symmetry, accordingly, Figs. 3(a) and 3(b) also demon-
strate a pair of edge modes (blue curves) in the K0 valley,
associated with opposite group velocities to those in the K
valley. Critical signatures for the AVH and ALH systems
are further demonstrated in Figs. 3(c) and 3(d)—the sound
propagations in finite-size samples stimulated by a point
source. The point source is located at the left entrance of the
upper layer, and thus excites only the edge modes that

FIG. 3. Projected dispersions along an interface separating two
topologically distinct AVH BSCs (a), and two topologically
distinct ALH BSCs (b). Rod orientations are labeled for the BSCs
located at the left (L) and right (R) sides. Red and blue curves
correspond to the edge modes projected by the K and K0 valleys,
respectively. The insets exemplify two eigenstates projected to
the K valley. (c) The amplitude field simulated for a finite-size
sample with an AVH interface, excited by a point source (red star)
positioned at the left entrance of the upper layer. A side view of
the interface is zoomed-in to show the sound distribution in both
layers. (d) The same as (c), but for the ALH case.

FIG. 2. (a) Band edge frequencies of the 2nd and 3rd bands,
varied along the angular path depicted in the inset. (b) Reduced
phase diagram parametrized by the angles ðα; βÞ, distinguished
by the quantized topological invariants CK

V and CK
L . The numeri-

cal phase boundaries (solid lines) correspond to the closure of the
omnidirectional band gap, consistent with the model predictions
(dots).
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travel rightwards. It is observed that the pressure field in
Fig. 3(c) disperses in both layers: the strong and weak
amplitudes vary alternatively in the upper and lower layers
because of the interference between the two edge modes
projected by the K valley, where the beat oscillation is
determined by the momentum difference between the
modes. The pressure field in Fig. 3(d), however, shows
an excellent confinement in the upper layer. This indicates
that only the upper layer-polarized edge mode in the K
valley is well excited, in contrast to the lower layer-
polarized edge mode in the K0 valley. The layer-selective
excitation of the ALH edge modes could be particularly
useful in real applications.
The topologically protected edge states for the AVH and

ALH interface systems have been confirmed by experi-
ments. Figures 4(a1) and 4(a2) demonstrate the experi-
mental samples, where all geometric parameters are exactly
those mentioned in Fig. 3 (with a ¼ 1.2 cm). Both samples
have a size of 41 cm x 18 cm, made of 1056 triangular rods
in total. The samples are prepared by three-dimensional
printing, where the polymer material used can be safely
viewed as acoustically rigid with respect to the air back-
ground. In our experiments, a sound generator is placed at
the left entrance of the upper layer, and a subwavelength-
sized sound probe is inserted inside the sample to scan
sound profiles. We focus on the pressure distributions along

the crystal interfaces, where the associated decay feature
away from them has been checked. The measured pressure
distributions for the AVH and ALH samples are presented
in Figs. 4(b1) and 4(b2), respectively. As predicted above,
the experimental results for the AVH sample manifest a
clear beat effect associated with alternative wave concen-
trations in both layers, whereas the data for the ALH
sample demonstrate a dominant field distribution in one
layer. (The wave decay along the interface stems from the
viscous dissipation.) Furthermore, the Fourier transforms of
the pressure distributions give precise interface dispersions
for the rightward propagating modes [Figs. 4(c1) and
4(c2)]. (The resolution in momentum can be refined by
further lengthening the samples.) Again, the data capture
well the layer-mixed and layer-polarized signatures, respec-
tively, for the AVH and ALH edge modes: both AVH
modes are excited in both layers, whereas the ALH modes
are excited selectively.
Novel sound manipulations, e.g., intra- or interlayer

communications, could be realized by integrating the above
topological phenomena together in a compact device. Here
we propose an efficient interlayer converter to flip the layer
polarization. As shown in Fig. 5(a), the device is con-
structed by four distinct BSC phases that support ALH
(bilateral) and AVH (middle) edge modes along the x
direction interfaces. For a point source (red star) positioned

FIG. 4. Experimental evidences for the edge modes involved in Fig. 3. (a1) Experimental setup for the AVH case, where the red dashed
line indicates the crystal interface. Inset: local view of the sample. The cover plate is removed for displaying more sample details.
(b1) Experimental pressure amplitudes along the crystal interface, measured for both layers at 15.3 kHz. (c1) Experimental edge
dispersions (bright color) achieved by Fourier transforming the pressure fields scanned inside the upper and lower layers, where the
green curves label the simulated edge modes with positive group velocities. (a2)–(c2): The same as (a1)–(c1), but for the ALH case.
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at the left entrance of the upper layer crystal interface, as
predicted by a systemic analysis similar to Fig. 4, most of
the sound energy is switched to the lower layer as the wave
reaches another ALH interface, assisted by the layer-mixed
AVH interface with specific length. This interlayer con-
version has been further confirmed experimentally, as
manifested in Fig. 5(b) by the measured pressure ampli-
tudes along the upper and lower crystal interfaces.
In conclusion, a unique bilayer design of the SC has been

proposed to attain and enrich topologically distinct acoustic
insulators. Assisted with the additional layer information,
the valley-projected edge modes can be either layer mixed
or layer polarized. Interestingly, the bilayer design based on
rotating scatterers is much different from those bilayer
systems proposed in condensed matter physics [37–43],
which allows us to explore fundamentally new physics
beyond the original ones. Our findings have demonstrated
versatile controllability over the valley-projected edge
modes in response to external sound sources, comparing
with the existing topological acoustic insulators [27–29,49].
Extensions of our scheme to other artificial structures (e.g.,
for elastic and electromagnetic waves) would be very
interesting, and their further couplings with intrinsic polar-
izations may inspire both fundamental physics and practical
applications.

This work is supported by the National Basic Research
Program of China (Grant No. 2015CB755500); National

Natural Science Foundation of China (Grants
No. 11704128, No. 11774275, No. 11674250,
No. 11534013, and No. 11747310); National
Postdoctoral Program for Innovative Talents
(BX201600054); China Postdoctoral Science Foundation
(2017M610518).

*Corresponding author.
cyqiu@whu.edu.cn

†Corresponding author.
schen@nankai.edu.cn

‡Corresponding author.
zyliu@whu.edu.cn

[1] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[2] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum
spin Hall effect and topological phase transition in HgTe
quantum wells, Science 314, 1757 (2006).

[3] M. Z. Hasan and C. L. Kane, Colloquium: Topological
insulators, Rev. Mod. Phys. 82, 3045 (2010).

[4] X.-L. Qi and S.-C. Zhang, Topological insulators and
superconductors, Rev. Mod. Phys. 83, 1057 (2011).

[5] F. D. M. Haldane and S. Raghu, Possible Realization of
Directional Optical Waveguides in Photonic Crystals with
Broken Time-Reversal Symmetry, Phys. Rev. Lett. 100,
013904 (2008).

[6] S. Raghu and F. D. M. Haldane, Analogs of quantum-Hall-
effect edge states in photonic crystals, Phys. Rev. A 78,
033834 (2008).

[7] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic,
Reflection-Free One-Way Edge Modes in a Gyromagnetic
Photonic Crystal, Phys. Rev. Lett. 100, 013905 (2008).

[8] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic,
Observation of unidirectional backscattering-immune topo-
logical electromagnetic states, Nature (London) 461, 772
(2009).

[9] Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan,
Experimental Realization of Self-guiding Unidirectional
Electromagnetic Edge States, Phys. Rev. Lett. 106,
093903 (2011).

[10] P. Wang, L. Lu, and K. Bertoldi, Topological Phononic
Crystals with One-Way Elastic Edge Waves, Phys. Rev.
Lett. 115, 104302 (2015).

[11] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner,
and W. T. M. Irvine, Topological mechanics of gyroscopic
metamaterials, Proc. Natl. Acad. Sci. U.S.A. 112, 14495
(2015).

[12] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B.
Zhang, Topological Acoustics, Phys. Rev. Lett. 114, 114301
(2015).

[13] X. Ni, C. He, X. C. Sun, X. P. Liu, M. H. Lu, L. Feng, and
Y. F. Chen, Topologically protected one-way edge mode in
networks of acoustic resonators with circulating air flow,
New J. Phys. 17, 053016 (2015).

[14] A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alu,
Topologically robust sound propagation in an angular-
momentum-biased graphene-like resonator lattice, Nat.
Commun. 6, 8260 (2015).

(a)

(b)

FIG. 5. A layer-polarization converter constructed by four
BSCs with rod orientations ð � 10°; 3°Þ and ð0;�20°Þ, belonging
to ALH and AVH acoustic insulators, respectively. (a) Full-wave
simulation at 15.3 kHz, which shows sound concentration
varying from the upper layer to the lower layer. (b) Pressure
amplitudes measured for the upper and lower interfaces along the
x direction, where the shadow region indicates clearly the
interlayer conversion.

PHYSICAL REVIEW LETTERS 120, 116802 (2018)

116802-5

https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevLett.100.013905
https://doi.org/10.1038/nature08293
https://doi.org/10.1038/nature08293
https://doi.org/10.1103/PhysRevLett.106.093903
https://doi.org/10.1103/PhysRevLett.106.093903
https://doi.org/10.1103/PhysRevLett.115.104302
https://doi.org/10.1103/PhysRevLett.115.104302
https://doi.org/10.1073/pnas.1507413112
https://doi.org/10.1073/pnas.1507413112
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1088/1367-2630/17/5/053016
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1038/ncomms9260


[15] Z.-G. Chen and Y. Wu, Tunable Topological Phononic
Crystals, Phys. Rev. Applied 5, 054021 (2016).

[16] K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic
field for photons by controlling the phase of dynamic
modulation, Nat. Photonics 6, 782 (2012).

[17] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Photonic Floquet topological insulators, Nature (London)
496, 196 (2013).

[18] M. Xiao, W.-J. Chen, W.-Y. He, and C. T. Chan, Synthetic
gauge flux and Weyl points in acoustic systems, Nat. Phys.
11, 920 (2015).

[19] A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian,
A. H. MacDonald, and G. Shvets, Photonic topological
insulators, Nat. Mater. 12, 233 (2013).

[20] W. J. Chen, S. J. Jiang, X. D. Chen, B. Zhu, L. Zhou, J. W.
Dong, and C. T. Chan, Experimental realization of photonic
topological insulator in a uniaxial metacrystal waveguide,
Nat. Commun. 5, 5782 (2014).

[21] T. Ma, A. B. Khanikaev, S. H. Mousavi, and G. Shvets,
Guiding Electromagnetic Waves Around Sharp Corners:
Topologically Protected Photonic Transport in Metawave-
guides, Phys. Rev. Lett. 114, 127401 (2015).

[22] X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack,
and A. B. Khanikaev, Robust reconfigurable electromag-
netic pathways within a photonic topological insulator, Nat.
Mater. 15, 542 (2016).

[23] S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Topologi-
cally protected elastic waves in phononic metamaterials,
Nat. Commun. 6, 8682 (2015).

[24] R. Susstrunk and S. D. Huber, Observation of phononic
helical edge states in a mechanical topological insulator,
Science 349, 47 (2015).

[25] L. H. Wu and X. Hu, Scheme for Achieving a Topological
Photonic Crystal by Using Dielectric Material, Phys. Rev.
Lett. 114, 223901 (2015).

[26] Y. Yang, Y. F. Xu, T. Xu, H. X. Wang, J. H. Jiang, X. Hu,
and Z. H. Hang, Visualization of unidirectional optical
waveguide using topological photonic crystals made of
dielectric material, arXiv:1610.07780.

[27] Y. G. Peng, C. Z. Qin, D. G. Zhao, Y. X. Shen, X. Y. Xu, M.
Bao, H. Jia, and X. F. Zhu, Experimental demonstration of
anomalous Floquet topological insulator for sound, Nat.
Commun. 7, 13368 (2016).

[28] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P.
Liu, and Y.-F. Chen, Acoustic topological insulator and
robust one-way sound transport, Nat. Phys. 12, 1124
(2016).

[29] Z. Zhang, Q. Wei, Y. Cheng, T. Zhang, D. Wu, and X. Liu,
Topological Creation of Acoustic Pseudospin Multipoles in
a Flow-Free Symmetry-Broken Metamaterial Lattice, Phys.
Rev. Lett. 118, 084303 (2017).

[30] L. Lu, J. D. Joannopoulos, and M. Soljaclc, Topological
photonics, Nat. Photonics 8, 821 (2014).

[31] V. Peano, C. Brendel, M. Schmidt, and F. Marquardt,
Topological Phases of Sound and Light, Phys. Rev. X 5,
031011 (2015).

[32] A. Rycerz, J. Tworzydło, and C.W. J. Beenakker, Valley
filter and valley valve in graphene, Nat. Phys. 3, 172
(2007).

[33] D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in
graphene: Magnetic moment and topological transport,
Phys. Rev. Lett. 99, 236809 (2007).

[34] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, The
valley Hall effect in MoS2 transistors, Science 344, 1489
(2014).

[35] R. V. Gorbachev, J. C. Song, G. L. Yu, A. V. Kretinin, F.
Withers, Y. Cao, A. Mishchenko, I. V. Grigorieva, K. S.
Novoselov, L. S. Levitov, and A. K. Geim, Detecting topo-
logical currents in graphene superlattices, Science 346, 448
(2014).

[36] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and
pseudospins in layered transition metal dichalcogenides,
Nat. Phys. 10, 343 (2014).

[37] L. E. F. Foa Torres, V. Dal Lago, and E. Suarez Morell,
Crafting zero-bias one-way transport of charge and spin,
Phys. Rev. B 93, 075438 (2016).

[38] I. Martin, Y. M. Blanter, and A. F. Morpurgo, Topological
Confinement in Bilayer Graphene, Phys. Rev. Lett. 100,
036804 (2008).

[39] F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDon-
ald, Spontaneous Quantum Hall States in Chirally Stacked
Few-Layer Graphene Systems, Phys. Rev. Lett. 106, 156801
(2011).

[40] F. Zhang, A. H. MacDonald, and E. J. Mele, Valley Chern
numbers and boundary modes in gapped bilayer graphene,
Proc. Natl. Acad. Sci. U.S.A. 110, 10546 (2013).

[41] L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco, Jr., C. Ojeda-
Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J.
Analytis, and F. Wang, Topological valley transport at
bilayer graphene domain walls, Nature (London) 520,
650 (2015).

[42] J. Li, K. Wang, K. J. McFaul, Z. Zern, Y. Ren, K. Watanabe,
T. Taniguchi, Z. Qiao, and J. Zhu, Gate-controlled topo-
logical conducting channels in bilayer graphene, Nat.
Nanotechnol. 11, 1060 (2016).

[43] J. Li, I. Martin, M. Büttiker, and A. F. Morpurgo, Marginal
topological properties of graphene: a comparison with
topological insulators, Phys. Scr. T146, 014021 (2012).

[44] J. Lu, C. Qiu, M. Ke, and Z. Liu, Valley Vortex States in
Sonic Crystals, Phys. Rev. Lett. 116, 093901 (2016).

[45] L. Ye, C. Qiu, J. Lu, X. Wen, Y. Shen, M. Ke, F. Zhang, and
Z. Liu, Observation of acoustic valley vortex states and
valley-chirality locked beam splitting, Phys. Rev. B 95,
174106 (2017).

[46] J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, and X. Zhang,
Valley photonic crystals for control of spin and topology,
Nat. Mater. 16, 298 (2017).

[47] X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, Valley-
contrasting physics in all-dielectric photonic crystals:
Orbital angular momentum and topological propagation,
Phys. Rev. B 96, 020202 (2017).

[48] T. Ma and G. Shvets, All-Si valley-Hall photonic topologi-
cal insulator, New J. Phys. 18, 025012 (2016).

[49] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu,
Observation of topological valley transport of sound in sonic
crystals, Nat. Phys. 13, 369 (2017).

[50] R. K. Pal and M. Ruzzene, Edge waves in plates with
resonators: an elastic analogue of the quantum valley Hall
effect, New J. Phys. 19, 025001 (2017).

PHYSICAL REVIEW LETTERS 120, 116802 (2018)

116802-6

https://doi.org/10.1103/PhysRevApplied.5.054021
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nphys3458
https://doi.org/10.1038/nphys3458
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/ncomms6782
https://doi.org/10.1103/PhysRevLett.114.127401
https://doi.org/10.1038/nmat4573
https://doi.org/10.1038/nmat4573
https://doi.org/10.1038/ncomms9682
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1103/PhysRevLett.114.223901
http://arXiv.org/abs/1610.07780
https://doi.org/10.1038/ncomms13368
https://doi.org/10.1038/ncomms13368
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/nphys3867
https://doi.org/10.1103/PhysRevLett.118.084303
https://doi.org/10.1103/PhysRevLett.118.084303
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1103/PhysRevX.5.031011
https://doi.org/10.1103/PhysRevX.5.031011
https://doi.org/10.1038/nphys547
https://doi.org/10.1038/nphys547
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1126/science.1250140
https://doi.org/10.1126/science.1250140
https://doi.org/10.1126/science.1254966
https://doi.org/10.1126/science.1254966
https://doi.org/10.1038/nphys2942
https://doi.org/10.1103/PhysRevB.93.075438
https://doi.org/10.1103/PhysRevLett.100.036804
https://doi.org/10.1103/PhysRevLett.100.036804
https://doi.org/10.1103/PhysRevLett.106.156801
https://doi.org/10.1103/PhysRevLett.106.156801
https://doi.org/10.1073/pnas.1308853110
https://doi.org/10.1038/nature14364
https://doi.org/10.1038/nature14364
https://doi.org/10.1038/nnano.2016.158
https://doi.org/10.1038/nnano.2016.158
https://doi.org/10.1088/0031-8949/2012/T146/014021
https://doi.org/10.1103/PhysRevLett.116.093901
https://doi.org/10.1103/PhysRevB.95.174106
https://doi.org/10.1103/PhysRevB.95.174106
https://doi.org/10.1038/nmat4807
https://doi.org/10.1103/PhysRevB.96.020202
https://doi.org/10.1088/1367-2630/18/2/025012
https://doi.org/10.1038/nphys3999
https://doi.org/10.1088/1367-2630/aa56a2


[51] X. Wu, Y. Meng, J. Tian, Y. Huang, H. Xiang, D. Han, and
W. Wen, Direct observation of valley-polarized topological
edge states in designer surface plasmon crystals, Nat.
Commun. 8, 1304 (2017).

[52] J. Noh, S. Huang, K. Chen, and M. C. Rechtsman, Ob-
servation of Photonic Topological Valley-Hall Edge States,
Phys. Rev. Lett. 120, 063902 (2018).

[53] F. Gao, H. Xue, Z. Yang, K. Lai, Y. Yu, X. Lin, Y. Chong, G.
Shvets, and B. Zhang, Topologically-protected refraction
of robust kink states in valley photonic crystals,
arXiv:1706.04731.

[54] T. Liu and F. Semperlotti, Tunable Acoustic Valley–Hall
Edge States in Reconfigurable Phononic Elastic Wave-
guides, Phys. Rev. Applied 9, 014001 (2018).

[55] J. Lu, C. Qiu, S. Xu, Y. Ye, M. Ke, and Z. Liu, Dirac cones
in two-dimensional artificial crystals for classical waves,
Phys. Rev. B 89, 134302 (2014).

[56] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.116802 for more
details on our analytical model.

[57] L. Sheng, D. N. Sheng, C. S. Ting, and F. D. M. Haldane,
Nondissipative Spin Hall Effect via Quantized Edge Trans-
port, Phys. Rev. Lett. 95, 136602 (2005).

[58] D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M.
Haldane, Quantum Spin-Hall Effect and Topologically
Invariant Chern Numbers, Phys. Rev. Lett. 97, 036808
(2006).

PHYSICAL REVIEW LETTERS 120, 116802 (2018)

116802-7

https://doi.org/10.1038/s41467-017-01515-2
https://doi.org/10.1038/s41467-017-01515-2
https://doi.org/10.1103/PhysRevLett.120.063902
http://arXiv.org/abs/1706.04731
https://doi.org/10.1103/PhysRevApplied.9.014001
https://doi.org/10.1103/PhysRevB.89.134302
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.116802
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.116802
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.116802
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.116802
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.116802
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.116802
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.116802
https://doi.org/10.1103/PhysRevLett.95.136602
https://doi.org/10.1103/PhysRevLett.97.036808
https://doi.org/10.1103/PhysRevLett.97.036808

