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Supplementary Materials 

 
Based on the k·p perturbation method, in Sec. (S1) we derive the effective 

Hamiltonian for the bilayer sonic crystal (BSC) in the vicinity of the Brillouin zone 

corners K and K’. Specifically, the K valley is focused and the physics in the K’ 

valley can be derived by considering time-reversal symmetry. Analytically, the model 

Hamiltonian reproduces well the dispersions and phase boundaries obtained by 

full-wave simulations [see Sec. (S2)]. In Sec. (S3) we present an analytical derivation 

of the topological indices for different acoustic valley Hall insulators, accompanied 

with their numerical verifications in Sec. (S4).  

 
S1. Effective Hamiltonian for bilayer sonic crystals  

Firstly, we give a brief summary on the k·p model introduced previously for 

describing a monolayer sonic crystal [1,2]. For a monolayer sonic crystal made of a 

hexagonal array of regular triangular scattterers with rotation angle 0γ = , the system 

has C3v symmetry and supports deterministic double degeneracy at the Brillouin zone 

corners. Together with the symmetry analysis, the perturbation Hamiltonian 

contributes linear dispersions (of slopes Dv± ) near the Dirac frequency Dω . Once 

the triangular scatterers are slightly rotated, the conic degeneracy at K point is lifted 

and a perturbation Hamiltonian can be generally written as  
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where the base functions are selected as the degenerate acoustic valley vortex states 
0 0{ , }
p q

ψ ψ− +  for 0γ = , iω  with { },i p q+ −=  represents the frequencies of the 

nondegenerate acoustic valley vortex states for 0γ ≠ , and ( ),x yκ κ  describes the 

wavevector deviated from the K point. The mass terms 2 2 2D Dp
ω ω ηω γ− − ≈  and 

2 2 2D Dq
ω ω ηω γ+ − ≈ −  are proportional to the (small) rotation angle γ , where the 

coefficient η  can be extracted from the angularly dependent bandgap [2]. 

Interestingly, the coefficient η  increases almost linearly with the volume filling ratio 

of the triangular scatterers. 
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Now we consider the BSC case. The basis is initially selected as the four 

eigenstates of the BSC with rotation angles 1 2 0γ γ= =  in the absence of interlayer 

coupling, i.e., 0{ }iψ  with 1 1 2 2{ , , , }i p q p q− + − += , where the additional subscripts 1 and 2 

are layer indices. For small values of 1γ  and 2γ , the Hamiltonian of the BSC without 

interlayer coupling is a direct sum of those for independent monolayers, 

in
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Considering the interlayer coupling, a new basis can be selected as the linear 

combination of the original one, i.e.,  
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where the subscripts S and A describe the symmetric and antisymmetric with respect 

to horizontal reflection hσ . The reflection operator, satisfying 2 1hσ = , 
1 2

0 0
h p p

σ ψ ψ− −= , 

and 
1 2

0 0
h q q

σ ψ ψ+ += , is an element of D3h, which is the point group for the BSC with 

1 2 0γ γ= = . In this new basis, the BSC Hamiltonian with interlayer coupling is 

diagonalized with diagonal items 2 2 2 2
, , , ,{ , , , }p S p A q S q Aω ω ω ω . Due to the equivalence of 

p  and q , , ,p S q S Sω ω ω= ≡  and , ,p A q A Aω ω ω= ≡ . Thus in the original basis, the 

perturbation term for the interlayer coupling reads 
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where ( )2 2 2AS A S D A Sω ω ω ω ω ω≈Δ = −−  is the frequency bandgap between the 

anti-symmetric and symmetric modes. Note that here the scatterer rotation is not taken 

into account for the interlayer coupling since it is quadratic small to the 

eigenfreuqency. Combining the intralayer and interlayer couplings together, we get 

the total perturbation Hamiltonian for the BSC (scaled by 2 Dω ), i.e., 

( )intra inter 2 DH H Hδ δ δ ω′ ′= + , which satisfies the eigen equation Hδ ψ δωψ=  with 

δω  being the frequency deviation to Dω . 
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Utilizing the Pauli matrices, iσ  for valley pseudospins and is  for layer 

pseudospins, the perturbation Hamiltonian [i.e., Eq. (1) in the main text] can be 

concisely written as  

( ) ( )D x x y y z z c xH v s sδ κ σ κ σ η α β σ= + + + − Δ ,           (S2) 

where 1 2( ) 2α γ γ= − , 1 2( ) 2β γ γ= +  and 2c ASωΔ = Δ . Specifically, z zsηα σ  

mimics the spin-orbit coupling in quantum spin Hall effect and c xsΔ  mimics a 

Zeeman term in electronic systems. For the BSCs involved in the main text, three 

parameters are numerically extracted: 0.643Dv = , 0.0036 / degη = , and 

0.0206cΔ = , where the former two depend on the filling ratio of the triangular 

scatterers and the third one depends mostly on the geometry of the penetrated holes 

that connect the double layers. 

 

S2. Analytical dispersion curves and phase boundaries 

For brevity, we use the substitutions D x xv kκ η = , D y yv kκ η =  and c hηΔ =  

to rewrite the Hamiltonian as [( ) ( ) ]x x y y z z xH k k s hsδ η σ σ α β σ= + + + − . Solving the 

eigen problem n n nHφ δωδ φ=  in the cylindrical coordinates ( ),k θ , with 

2 2
x yk k k= +  and arg( )x yk ikθ = + , we obtain dispersion curves for the four bands: 

1,21,2 fδ ηω −=  and 2,3,4 1fδ ηω = , where the subscript labels the bands orderly, and 

2 2 2 2
1,2 2f k h α β χ+ + + ±=  with 2 2 2 2 2 2h h kχ α β β += + . Figure S1(a) presents 

the analytical dispersions (blue dots) for several typical BSCs mentioned in the main 

text. The excellent agreements with the simulated results (red lines) validate the 

effectiveness of our analytical model, even for the BSCs with relatively large rotation 

angles. In addition, the eigen problem gives the corresponding eigenstates 

1( , , , )i i
n n

T
n n n nb e d eN a cθ θφ −= , with 2 2 2 2

n n n n nN a b c d= + + +  being normalization 

factors. Specifically, here we present explicit forms for the k -dependent coefficients 

of the first two bands, 
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which will be used to evaluate the topological invariants below. 

 

 
FIG. S1. (a) Dispersions near the K point for the BSCs with different rotation angles. 

(b) Phase boundaries around the point ( , ) (0,0)α β = . The BSC systems concerned in 

(a) are marked by the black circles in (b). In both (a) and (b), the analytical data (blue 

dots) capture well the results obtained by COMSOL simulations (red lines).  

 

The analytical model can also predict the phase boundary precisely. As stated in 

the main text, the topological phase transition is accompanied with the closure of the 

omnidirectional bandgap between the inner two bands, i.e., the 2nd and 3rd ones. This 

requires 2 3δω δω=  and thus 2 0f = , which gives rise to 

2 2 2 2 2 22 ( )k h hα β α β− ± −= − . To obtain real solution of k , the conditions 

0α =  or 2 2hβ ≥  must be satisfied. For the case of 0α = , we have the solution 

2 2k h β= −  with h hβ− ≤ ≤ . This gives the straight phase boundary in Fig. S1(b), 

which corresponds to the gap closure associated with nodal ring degeneracy. For the 

case of 2 2hβ ≥ , we have 2 2 2( | |)k hβ α− ±= − ，leading to the solution 0k =  



5 

 

with 2 2hβ α= ± + . This corresponds to the curved phase boundaries in Fig. S1(b), 

associated with accidental Dirac point degeneracy. Note that although the perturbation 

Hamiltonian is established in the vicinity of ( , ) (0,0)α β = , it works well within a 

relatively wide angular range, which is verified in Fig. S1(b) by the excellent 

agreement between the analytical (blue dots) and simulated (red lines) phase 

boundaries.  

 

S3. Layer-polarized valley Chern numbers and topological invariants 

Below we present an analytical derivation for the quantized topological 

invariants. To distinguish all topological phases emerging in Fig. 2(b) (see main text), 

both the valley and layer pseudospins involved in the Hamiltonian must be resolved. 

Here we introduce layer-polarized valley Chern numbers (VCNs) KC±  to describe the 

two bands below the omnidirectional bandgap, where the signs +  and −  

correspond to the regrouped states confined in the upper and lower layers, 

respectively. The approach, which has been developed in electronic systems [3-6], is 

briefly depicted below.  

To calculate the layer-polarized VCNs, the Hamiltonian is projected into a layer 

pseudospin subspace, where the operator { }diag 1, 1zs = −  carries eigenvalues 1+  

and 1−  for the upper and lower layer-polarized states. Spanning zs  in the basis 

{ }1 2,φ φ  of the lower two bands, a 2D matrix [ ]11 12 21 22, ; ,i z js m m m mφ φ =  is 

obtained, where the components 11 22m m m= − =  and 12 21m m t= =  with

2 2 2 2 2
1 1 1 1 1( )m N a b c d−= + − −  and 1 1

1 2 1 2 1 2 1 2 1 2( )N N a a b dt b c c d− − + − −= . The matrix 

gives the regrouped eigenstates ( )1 2
1 2 1ψ φ ξ φ ξ± ±

± = ± +  with 

( )1 2 2t m t mξ −= + − , whose polarizabilities are characterized by the corresponding 

eigenvalues 2 2m tλ± = ± + . Note that the existence of the polarization spectral gap, 

λ λ λ+ −Δ = − , guarantees the effectiveness of the definition for the layer-polarized 

VCNs.  

The layer-polarized VCNs can be evaluated by an integral over the whole K 
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valley, i.e., ( )1 ,
2 K

KC ddκ κ θθ
π± ±= Ω∫∫ . Here ( ) 1, 2 Im θ κκ θ κ ψ ψ−

± ± ±Ω = ∂ ∂  are 

Berry curvatures defined in the polar coordinates, which are strongly localized around 

the K point. The definition of the VCNs is similar to the original VCN defined for 

each band [2], except that here the new basis functions ψ ±  replace 1,2φ  to evaluate 

the Berry curvatures. Substituting ( , )κ θ±Ω  into the definition of the layer-polarized 

VCNs, we get 

( ) ( )
0

lim limK

k k
PC k P k± ±± →∞ →

−= ,                    (S3) 

with 

( ) ( )2 1 2
1 2 2 1P k P P Qξ ξ ξ± ± ±

± = + ± +                (S4) 

being the azimuthal connections defined by ψ ± . More specifically, 

1,2 1,2 1,2 1,2 1,2 1
2 2 2

,2( )P i N b dθφ φ −= ∂ = − + , 1 1
1 2 1 21 22 1( )N N b bQ d di θφ φ − −= ∂ = − + , and the 

coefficient 1 2 2= ( )t m t mξ − + − .  

To obtain the layer-polarized VCNs, we need to calculate the limits of ( )P k±  at 

0k =  and ∞ points. Consider the limits of 1,2 ( )P k  first. As k → ∞ , h kχ =  and 

1,2f k=  to the leading order, and thus the coefficients of the eigenstates 2
1,2 ka h= m , 

2
1,2 kb h= ± , 2

1,2c kh= − , 2
1,2d kh= + , and 2

1,2 2N h k= . This gives 1,2( ) 1 2P ∞ = − . 

The limit calculation at 0k =  is relatively complicate. As 0k → , 

1 2,2 ,
2

1 ( )( )ha fαβ χ α ββ ± + −= + , 2
1,2 ( )b hk αβ χ+ ±= , 2

1,2 1,2( )hc fβ χ β± −= − , 

and 1,2 1,2( )d k fh α= − −  to the leading order, where 2 2hχ β α= +  and 

2
1,2

2f hα β+= ± . For example, 1 1(0) (0) 0b d≡ ≡ , and 1(0)a  and 1(0)c  are 

nonzero only if 0β < . Therefore, it is easy to derive 1 0(0)P =  for 0β < , and for 

0β > ,  

2 2
1 1 1 1 1 1 1 1 1 1

2
1

1 0 0 0
1 1 1 1 1 1 1 1 1 1 1

(0) lim lim lim 1
k k k

P
N a a b b c c d d

b d b b d d b b d
b b d d

d
→ → →

+= − = − = − = −
′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′
+

′
′+ + +

+ +
, 

where the L'Hôpital's rule has been applied associated with the derivatives 

1 1(0) (0) 0a c′ ′= = . Similarly, 2 (0)P = 0  for 2 20 hβ α< < +  and 2 2hβ α< − + , 
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and 2 (0) 1P = −  for 2 2 0h α β+− < <  and 2 2hβ α> + . 

Now we focus on the quantities Q  and ξ  around point O1 in the phase 

diagram, and give ( )P k± , KC±  and the topological invariants finally. Again, by 

expanding the coefficients to the first order, it is easy to obtain the behaviors at 

k → ∞ , i.e., ( ) 1t ∞ = − , ( ) 0m ∞ =  and ( ) 0Q ∞ = , such that ( ) 1ξ ∞ = −  and 

( ) 1 2P± ∞ = − . At the limit 0k → , it can be proven that 0(0)Q =  and thus 

2 2
1 2(0) (0) (0) (0)[ [1] (0)]P P Pξ ξ± ±

± = + + . Therefore, (0) 1P± = ±  for the region 

2 2hβ α> + , and (0) 0P± = for the region 2 2hβ α< − + , or more briefly, 

(0) (1 sgn ) 2P β± = − ±  for 2 2hβ α> + . On the other hand, 

2(0) 1 [1 (0)]P ξ ±
± = − +  for the region 2 20 hβ α< < + , and 

2 2(0) (0) [1 (0)]P ξ ξ± ±
± = − +  for the region 2 2 0h α β− + < < . Take the first case as 

an example. Utilizing the L'Hôpital's rule, we can prove that, for 0α > , (0) 0ξ =  

and thus + (0) 1P = −  and (0) 0P− = ; for 0α < , 1(0) 0ξ − =  and thus + (0) 0P =  

and (0) 1P− = − . This can be summarized as (0) (1 sgn ) 2P α± = − ±  for the region 

2 20 hβ α< < + . A similar analysis gives the same result for the other case with 

2 2 0h α β− + < < . Therefore, we have (0) (1 sgn ) 2P α± = − ±  for the region 

2 2hβ α< + . Eventually, the layer-polarized VCN distributions can be concluded: 

sgn
2

KC α
± = ±  for 2 2hβ α< + , and 

sgn
2

KC β
± =  for 2 2hβ α> + . As 

explicitly labeled in the phase diagram [see Fig. 2(b) in the main text], two types of 

quantized topological invariants can be defined to characterize the valley-projected 

topological phases, i.e., K K K
VC C C+ −= +  and K K K

LC C C+ −= − . The former is a natural 

bilayer extension of the VCN concerned in the monolayer system [2], and the latter 

identifies the layer information and resembles that proposed for QSH systems. 

Specifically, we have ( )sgnK
VC β=  and 0K

LC =  for the phase region 

2 2hβ α> + , while ( )sgnK
LC α=  and 0K

VC =  for the phase region 

2 2hβ α< + .  
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Any interface that separates two topologically distinct BSCs can host edge states. 

In the main text we have demonstrated the most fundamental interface systems, 

constructed either by two different AVH phases or by two different ALH phases. As a 

complement, here we provide the projected dispersions for another two representative 

systems. The first one consists of two BSCs with rod orientations (10 ,3 )° °  and 

(10 , 3 )° − ° . Figure S2(a) shows the corresponding interface dispersion. As predicted, 

there is no any edge state emerging in the bulk gap, since both BSCs belong to 

topologically identical ALH phases. The second interface system is constructed by the 

BSCs with rod orientations (0, 20 )°  and (10 ,3 )° ° , belonging to AVH and ALH 

phases respectively. The projected dispersion shows a time-reversal pair of edge states, 

since the difference of the topological invariants across the interface is 1. 

 
FIG. S2. Projected dispersions along an interface separating two topologically 

identical BSCs (a), and two topologically distinct BSCs with AVH and ALH phases 

respectively (b). The red and blue curves in (b) correspond to the edge modes 

projected by the K and K’ valleys. 

 

S4. Numerical verifications for the layer-polarized VCNs and topological 

invariants 

To check the analytical derivation made in previous section, we have also 

numerically calculated the layer-polarized VCNs near the O1 point based on the 

definition 2 ( , ) 2K

K
dC κ κ θ π±± = Ω∫∫ . This further gives the topological invariants 

K
LC  and K

VC . The numerical data are provided in Figs. S3(a)-S3(d), which are 

consistent with the analytical results mentioned above. Similarly, Figs. S3(e)-S3(h) 

provide the numerical data for the BSC around the O2 point. Note that for the O2 case, 
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the inversion symmetry replaces the horizontal mirror symmetry, and the 

configuration for the upper layer is rotated by 60°  leading to a sign-inversed η  for 

that layer. As a consequence, the perturbation Hamiltonian around the K valley can be 

written as [7]  

( ) ( )D x x y y z z c xH v s sδ κ σ κ σ η β α σ= + − + − Δ .            (S5) 

Here cΔ  is the frequency difference between the antisymmetric and symmetric 

modes under inversion symmetry, and now ( ),α β  are rotation angles with respect 

to the reference point O2. 

 

FIG. S3. (a) and (b): Numerical distributions of the layer-polarized VCNs KC±  for 

the BSCs near the O1 point. (c) and (d): The corresponding topological invariants 
K
LC  and K

VC . (e)-(h): Similar to (a)-(d), but for the BSCs near the O2 point. 
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