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Note 1: Theoretical calculation of the dispersion relation of the SSP mode supported by 

an HMM waveguide (array) 

A. One-dimensional HMM waveguide of finite width 
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Figure S1. Schematic of one-dimensional HMM waveguide 

 

In the microwave frequency domain, metal can be treated as perfect electric conductor. 

Assuming that the wavelength of light is much larger than the lattice constant along z 

direction ( 0 d zt P  ), all the high-order diffraction can be safely neglected except the 

first-order in / 2 x W  and / 2x W   regions. The electromagnetic (EM) fields for the 

transverse magnetic (TM) mode can be written as  

                               
0

0

/    ( / 2)

' /   ( / 2)





  
 



xz

xz

ik xik z

z

z ik xik z

z

e e P x W
E

e e P x W
                                                            (S1) 

                                 
0 0

0 0

/ ( )  ( / 2)

' / ( )  ( / 2)





  
 

 

xz

xz

ik xik z

x z

y ik xik z

x z

k e e k P x W
H

k e e k P x W
                                               (S2) 

where 0 0/k c   is the wavenumber in free space and zk  is the propagation constant along z 

direction, 2 2

0 x zk k k  , and 0 / zP   and 0 '/ zP   are the amplitudes of the electric field 

of zE   in the corresponding regions. 

In the dielectric spacer regions ( | | / 2x W ), the fundamental TM mode will dominate since 

dt  is much smaller than the wavelength of radiation. Therefore, only the fundamental TM 

mode need to be considered in the modal expansion of the EM fields inside the dielectric 

layer 
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                                  0 0[ ] /


   d din k x in k x

y d d dH n C e n C e t ,                                                         (S4) 

where / dC t   and / dC t  are the amplitude of the forward and backward propagating TM 

modes, respectively. 

By connecting Equation S1-S4 with the Maxwell’s boundary conditions that the tangential 

fields of zE , and yH  must be continuous at / 2 x W  , we can easily get the following 

equation set 
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where 0

sin( / 2)1

/ 2
 
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z
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P
z z dz d

t k t
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,
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e  . By 

eliminating C  , and C  , we can further get 0 0 0
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k
 : 

(1) If 0 0 '   , then 
2

0 0
0tan( / 2) d d

x

k S
in n k W

k
. Because the dispersion curve of the SSP 

mode must deviate more far from the light line, i.e. 0zk k  , hence we have 
2 2

0 x zk i k k  . 

We can thus obtain the dispersion relation as 2 2 2

0 0 0 0cot( / 2) /  z d dk k k S n k W n   for 

asymmetrical SSP mode.  

(2) If 0 0 '    , then
2

0 0
0cot( / 2)  d d

x

k S
in n k W

k
. We can obtain the dispersion relation as 

2 2 2

0 0 0 0tan( / 2) / z d dk k k S n k W n   for symmetrical SSP mode by taking account into the 

relation of xk   and zk   as 2 2

0 x zk k k  . 
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B. One-dimensional HMM waveguide array 
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Figure S2. Schematic of one-dimensional HMM waveguide array. 

 

Similar to Note 1A, we firstly write out the EM fields in all the regions except in the metal 

region:  
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where  , '   and C  are unsolved coefficients related to mode amplitudes in different 

regions. 

One can connect Equation S6-S9 with the Maxwell’s boundary conditions and the periodic 

boundary conditions, yielding the following relations   
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By eliminating  ,  '  and C  in Equation S10, we obtain 
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for asymmetrical SSP mode. As  g , 
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the dispersion relation for the asymmetrical SSP mode in Note 1A. 
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for symmetrical SSP mode. As  g  , 
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the dispersion relation for the symmetrical SSP mode in Note 1A.   

Note 2: Theoretical calculation of the complex reflection/transmission coefficients for 

one-dimensional HMM waveguide array 
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Figure S3. Schematic of one-dimensional HMM waveguide array. 

 

For one-dimensional HMM waveguide array with a finite height of H, normally illuminated 

with x-polarized plane-waves, the EM fields in region I (z<0) and region III (z>H) can be 

written as [A1] 
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where ( )

, 2 /n

x airk n P  , ( ) 2 ( ) 2

, 0 ,( ) n n

z air x airk k k  , /n nr t  is the complex reflection/transmission 

coefficient with the diffraction order of n . 

In region II (0<z<H), the EM fields can be expressed as a linear combination of all the 

symmetric modes 
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By connecting Equations S14-S15 with the Maxwell’s boundary conditions, we can yield 

the following equation set as  
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By eliminating nr   and nt   in Equation S16, ( )
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Then nr  and nt  can be rewritten with a combination of ( )


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mB  
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The reflection/transmission (R/T) efficiency can thus be expressed as [A2] 
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The coupling efficiency between the n -order diffracted waves in the air and the m-th 

symmetric mode supported by the HMM waveguide array can be retrieved as 
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For the HMM waveguide used in our work, only one guided SSP mode (m=0) is supported. 

By setting m=0 and neglecting the other leaky modes in Equation S17-S18, nr  and nt  can be 

rewritten as 
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and the total transmission/reflection efficiency is 
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As W is close to zero, 
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 , we can get a nearly 100% transmission 

efficiency, T, for the incident EM waves. 

Note 3: Overlap between the incident EM waves and asymmetric HMM waveguide 
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Figure S4. The normalized field distributions of real parts (a, c) and imaginary parts (b, d) of Ex and 

Hy of the asymmetric SSP mode of the HMM waveguide (a, b) and incident plane waves (c, d). 

 

Power coupling efficiency represents the amount of power that can be coupled from one mode into 

a forward propagating wave with a different mode profile. The remaining power will be coupled into 

the backward propagating mode. Therefore, the power coupling efficiency is always less than or equal 

to the overlap between the two mode profiles [A3]. The overlap of the two modes (mode 1 and mode 

2) can be extracted as 

/2 /2
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
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 
                                              (S24) 

The field distributions of the incident EM waves and asymmetric mode of the HMM waveguide are 

shown in Figure S4. It is apparent that the field distributions of the incident EM waves and asymmetric 
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mode are even and odd functions, respectively. Hence, both of 
/2

(1) (2)

/2

P

x y
P

E H dx

  and 

/2
(2) (1)

/2

P

x y
P

E H dx

  should be zero, namely, the overlap between the incident EM waves and 

asymmetric mode is zero. As a result, the power coupling efficiency between the incident EM waves 

and asymmetric mode should be zero. 

Note 4: The role of high-order diffractions 

As schematically shown in Figure S5 (a), when an incident plane wave normally 

illuminates the HMM waveguide array, the incident EM wave will be reflected to different 

diffraction orders in region I and coupled to all allowed modes (here, only the zero-order SSP 

mode is considered) in region II. Although the high-order diffracted waves are evanescent 

waves and can not reach the far-field, their presences are crucial to make the boundary 

conditions at the air/HMM interface satisfied, and thus they can indirectly modify the final 

strength of the SSP mode (zero-order) in region II. Furthermore, as the SSP mode in region II 

reaches the bottom boundary of the HMM waveguide, it not only can couple to the zero-order 

diffracted waves in region III but also can couple to all high-order diffracted waves in region 

III. Again, those high-order diffracted waves are of evanescent nature which can not reach the 

far-field directly, but their presences are essential to make the boundary conditions satisfied 

and they thus contribute indirectly to the transmission [Figure S5 (b)]. Finally, we note that 

the complicated multiple scatterings inside the HMM can involve all high-order modes in 

different regions, which, in turn, affect the final transmission characteristics of the whole 

device. Figure S5 (b) schematically presents the looping process mentioned above. As shown 

in Figure 1(g) in the main text, the transmission mainly comes from zero-order coupling from 

incident waves to SSP mode, (0,0) , as the width of the HMM waveguide is very small. As the 

width of the HMM waveguide is increased, the coupling from the high-order diffractions and 

SSP mode, ( ,0)n , increases, and hence makes extra contributions to the transmission efficiency. 
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Therefore, we can still realize high transmission efficiency even if the width of the HMM 

waveguide is very large [Figure 1(h) in the main text].       
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Figure S5. (a) Illustration of the plane waves illuminating the HMM waveguide array. (b) 

Schematic of the energy transport process of the incident beam and different diffraction orders. 

 

Note 5: The effective refractive index and transmission of the HMM waveguide array  

As an illustration, we calculated the effective refractive index of the SSP mode in the 

1D-HMM waveguide array shown in Figure 1(d). As can be inferred from Figure 1(e) in the 

main text, the effective refractive index of the HMM waveguide firstly increases moderately, 

and increases sharply as the HMM waveguide width approaches the cut-off width. As shown 

in Figure S6 (a), the effective refractive index increases by 1.4 (from 1 to 2.4) when the width 

of HMM waveguide ranges from 0 to 5 mm. However, when the width of the HMM 

waveguide of the HMM waveguide increases from 5 mm to 6 mm, the effective refractive 

index increases by a large value of 9.7 (from 2.4 to 12.1). Correspondingly, the transmission 

efficiency for a HMM waveguide with a large width can be significantly reduced, compared 

with a HMM waveguide with a small width.  
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Figure S6. (a) Effective refractive index and (b) reflection/transmission intensity of the HMM 

waveguide array versus the width of the HMM waveguide at 12 GHz. 

 

Note 6: Fabrication and measurement of beam deflectors and lenses 

 

Figure S7. Experimental setup for (a) far-field and (b) near-field measurement. 

 

The HMM is comprised of multilayered alternating Cu/FR4 layers. Each copper layer is printed on 

a FR4 layer through the multilayered printed circuit board. The Cu/FR4 composite layers are then 

adhered together by use of a 0.05 mm thick melt FR4, which ensures the uniformity for each dielectric 

spacer between the adjacent copper layers. Finally, a standard mechanical milling technique with 

computerized numerical control milling machine is used to form the desired pattern of the HMM 

waveguide arrays after the multi-layers on a thin FR4 substrate is ready. 

The experimental setup for far-field and near-field measurement is presented in Figure S4. In the 

near-field measurement, a monopole antenna is used to probe the electric field [Figure S7b]. Far-field 

measurement and near-field scanning experiments are performed to characterize the device 

performances of the samples. In the far-field measurement, a horn antenna is used to receive the EM 

waves in the far-field. The receiving antenna can be flexibly rotated with respect to the samples to 

receive the angular spectrum. A reference measurement is implemented in the absence of the samples 

in the measuring zone. The far-field signals are normalized to the reference signals. Both the antennas 

are connected to a vector network analyzer (Agilent N5242A PNA-X). In the near-field scanning 
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experiments, the incident EM waves are generated by a horn antenna 2 m away from the samples. A 

monopole antenna in the output space is used to detect the electric field. The measured resolution is set 

to be 5 mm per step both along x, and z directions. Vector network analyzer (Keysight E5071C) is 

used for data acquisition.  

 

Note 7: Simulated and measured near-field electric field distrubutions of the 

polarization-dependent beam deflector 
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Figure S8. (a) Simulated and (b) measured near-field electric field distributions of xE  for the 

polarization-dependent beam deflector, illuminated with x-polarized plane-waves of normal 

incidence at 12 GHz. 

 

Note 8: Design of the polarization-independent beam deflector 
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Figure S9. (a-c) The dispersion relation of x- (or y-) polarization for the SHMM waveguide 

array with the sub-unit period, P, of 6.6 (a), 11 (b), and 16.5 (c) mm for different waveguide 

width, W. (d-f) The transmission intensity and phase shift of x- (or y-) polarization as a 

function of the waveguide width, W, when the working frequency is 8 GHz. 

 

In the design of the polarization-independent beam deflector, three structural parameters 

[height, H, period, P, and width, W] of the SHMM waveguide array should be considered. For 
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simplicity, the height of the SHMM waveguide is fixed at H =16.4 mm in the design, 

corresponding to 35 pair of Cu/FR4 layers. We have investigated a number of SHMM 

waveguide arrays with different sub-unit periods, and have come to the conclusion that 0-2π 

phase coverage could be more easily fulfilled if the sub-unit period of the SHMM waveguide 

array is sufficiently small. Here as an example, we have compared the phase coverage with 

three groups of sub-unit periods (6.6, 11, and 16.5 mm). The dispersion curves for different 

periods shown in Figure S9a-c indicate that the minimum period ( P =6.6 mm) subjects to the 

largest variation range in the propagation constant when the waveguide width is varied within 

the same range. In other words, the full phase coverage 0-2π can be fulfilled with the 

minimum variation range for the waveguide width in the case of P =6.6 mm [Figure S9d-f]. 

Moreover, 0-2π phase coverage could not be provided at 8 GHz with the sub-unit period of 

16.5 mm even if a sufficiently large waveguide width is used so that the working frequency 

approaches the cut-off frequency of the SSP mode [Figure S9f], which possibly fails to 

reshape the wave-front. We have presented the far-field intensity profiles of the designed 

beam deflector with P =6.6 mm [see the simulated results in Figure S10] and P =11 mm [see 

the simulated and measured results in Figure 4 in the main text]. 
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Figure S10. The simulated far-field intensity profiles for x- (a), and y- (b) polarized incident 

EM waves under normal incidence with the sub-unit period, P, of 6.6 mm. The waveguide 

widths for the sub-units within a super-cell are set to be 0, 0, 4.0, 4.0, 4.6, 4.6, 5.1, 5.1, 5.9, 

and 5.9 mm.  
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Figure S11. (a) The transmission, and reflection intensity versus the SHMM waveguide width, 

W, at 8 GHz. (b) The phase shift of the transmitted EM waves varies with W at 8 GHz. (c, d) 

The far-field electric field profiles and anomalous diffraction efficiency with different lattice 

constants (
x

L ) for x- (c), and y-polarized (d) incidences, respectively. 

 

The transmission-intensity and transmission-phase as a function of the waveguide width are 

shown in Figure S11a,b, respectively. By using different number of the SHMM waveguide 

arrays within a supercell to cover 0-2π phase, we are able to achieve different anomalous 

refraction angles [Figure S11c,d]. All the transmitted EM waves are deflected along the 

desired angles, predicted by the general Snell’s law [A4]. Note that, the diffraction efficiency 

can be more than 80% with 
x

L >44 mm. We have chosen 
x

L =66 mm to implement the 

experiment [see the fabricated sample in Figure 4 in the main text]. The simulated diffraction 

efficiencies for x- and y-polarizations can be as large as 92.7% and 97%, respectively.  

Note 9: Simulated and measured near-field electric field distrubutions of the 

polarization-independent beam deflector 
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Figure S12. The simulated (a, b), and measured (c, d) electric field distributions of 

x
E   and 

y
E   

in the output space for x-polarized incidence (a, c), and y-polarized incidence (b, d), 

respectively. 
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Note 10: Design of the polarization-independent focusing lens 

  
Figure S13. (a-b) The field intensity enhancement and the full width of half magnitude 

(FWHM) versus 
0


f
 for x- (a), and y- (b) polarized incidences, respectively. 

 

In the design of the focusing lens, the spatial phase distributions should satisfy 

hyperboloidal profile as described by Equation 5 in the main text, which requires the phase 

shift 
f
 decreases from the center to the side of the lens. With regard to the phase coverage 

presented in Figure S11b, one may directly place the sub-unit structures with the largest width 

in the center of the focusing lens, while arranging those sub-unit structures with the smaller 

width on both sides. However, the resultant phase distributions are accompanied with the 

minimum intensity transmission in the center of the focusing lens, which will somewhat 

weaken the focusing effect at the focal plane. As a result, we have optimized 
0


f
 to maximize 

the focusing intensity [see the focusing performance with different 
0


f
 in Figure S13]. The 

best focusing performance occurs at 
0


f
=π, both for x- and y-polarized incidences, and the 

corresponding structural parameters have been used to implement the focusing experiment in 

the main text. 

Note 11: Design of the half-wave plate with arrays of the RHMM waveguides 
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Figure S14. (a) The phase difference (     

y x
) between the transmitted electric field of 

x
E , 

and 
y

E , and transmission amplitude for (b) x-, and (c) y-polarizations versus 
x

W , and 
y

W . The 

RHMM waveguide array is illuminated with x- and y-polarized EM waves at 7.6 GHz. The 

triangular symbols in (a) denote π phase difference. Other geometrical parameters are set as 

x y
P P =13 mm, and 35( ) 

m d
H t t (

m
t  =0.068 mm, 

d
t  =0.47 mm).  

 

As has been stated in the Section of operating principle in the main text, a complete 

polarization conversion for CP EM waves occurs as the complex transmission coefficients for 

the orthogonal polarizations satisfy 
x y

0 t t  . The phase difference (     
y x

), and the 

transmission amplitude are calculated with FDTD simulations by sweeping the width 

(
x

W  ,
y

W ) of the RHMM waveguide [Figure S14]. The selection criterion of (
x

W  ,
y

W ) is π 

phase difference as well as minimum difference between the transmission amplitudes for x- 

and y-polarizations. Considering the calculation results presented in Figure S14, (
x

W  ,
y

W ) is 

set to be (6 mm, 9 mm) for the design of a half-wave plate. 

We next take two methods (FDTD simulation, and Effective-medium model) to analyze the 

performance of the RHMM waveguide array with 
x

W =6 mm, and 
y

W =9 mm. For the 

effective-medium method, the effective permittivity (ε), and permeability (μ) of the HMM can 

be expressed with a diagonal tensor form as 

                                                           


 
   
 
 zz

PEC

PEC                                                               (S25)                                         

                                                              

1


 

 
   
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 

xx

yy
                                                                   (S26) 
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where PEC stands for perfect electric conductor, 
zz

, and 
xx

  ( 
xx

= 
yy

) are presented in 

Figure S15. The phase difference,  , as a function of frequency is plotted in Figure S16a. 

The calculated results by the two methods are basically consistent in the frequency range 

considered. We attribute the oscillations in the curves of transmission amplitude to Fabry-

Perot cavity effect, originating from the reflection at the interface [Figure S16b]. Both 

methods reveal that   reaches approximately π at 7.6 GHz. As circularly polarized EM 

waves illuminate the RHMM waveguide array with varied rotation angle, nearly all the EM 

waves (~98%) will be converted into the cross-polarized EM waves [Figure S17]. 
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Figure S15. The effective permittivity, and permeability of the HMM consisting of alternating 

Cu/FR4 layers with mt =0.068 mm, and dt =0.47 mm. 
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Figure S16. (a) The phase difference (  ) between x- and y-polarized EM waves with 

(
x

W ,
y

W )=(6 mm, 9 mm). (b) Transmission amplitude for x-, and y-polarizations. The solid 

lines with triangular and circular symbols are retrieved by FDTD simulation, and effective-

medium model, respectively. In the calculation, it is assumed that 35 pair of Cu/FR4 layers 

(
m

t  =0.068 mm, 
d

t =0.47 mm) are used to construct the RHMM waveguide array, which is 

placed on a 2mm-thickness FR4 substrate. The lattice constants in x-y plane are chosen as 


x y

P P =13 mm. 
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Figure S17. The simulated polarization conversion efficiency versus rotation angle, α, of the 

RHMM waveguide array, illuminated with a normal-incidence RCP (a) and LCP (b) plane 

wave at 7.6 GHz. 

Note 12: Simulated and measured near-field electric field of the CP EM wave deflector 
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Figure S18. The simulated (a-d), and measured (e-h) electric field distributions of (

x
E  ,

y
E ) 

with RCP (a, b, e, f), and LCP (c, d, g, h) plane wave of normal incidence, respectively.  

 

Note 13: The diverging effect for the LCP incidence  

As for the LCP incidence, the PB phase shift of the transmitted EM waves shows an 

opposite sign compared to the RCP incidence. Different from the focusing effect for the RCP 

incidence, the EM waves diverge in the output space for the LCP incidence [Figure S19].  



20 

 

-150 -100 -50 0 50 100 150
-500

-400

-300

-200

-100

0

x(mm)

z(
m
m
)

0

1

2

3

4

5

6
(E/E0)

2

 
Figure S19. The simulated field intensity distribution in x-z plane, when the RHMM 

waveguide array is normally illuminated with the LCP at 7.6 GHz. 

 

Note 14: The spectral property of the HMM beam deflectors  
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Figure S20. The simulated spectrum of diffraction and conversion efficiencies for (a) 1D-

HMM, (b) SHMM, and (c) RHMM deflectors. 

 

We have presented the simulated spectrum of diffraction and conversion efficiencies for the 

three beam deflectors [Figure S20]. The operation bandwidths (> 80% diffraction efficiency) 

are 0.4 GHz with the 1D-HMM [Figure S20a], 0.6 GHz for x-polarization, and 0.8 GHz for y-

polarization with the SHMM [Figure S20b], and 0.6 GHz with the RHMM deflectors [Figure 

S20c], respectively. 

Note 15: The diffraction/conversion efficiencies versus the incidence angle 
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Figure S21. (a) The dependence of the diffraction/conversion efficiencies for the polarization-

dependent beam deflector on the incidence angle. (b) The diffraction angle versus the 

incidence angle. 
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Figure S22. The dependence of the diffraction/conversion efficiencies for the polarization-

independent beam deflector on the incidence angle with (a) x- and (b) y-polarized incidences, 

respectively. (c) The diffraction angle versus the incidence angle for x- (y-) polarized 

incidence. 

 

We have calculated the diffraction/conversion efficiencies for the HMM beam deflectors 

in Figure S21-S23. For the linearly-polarized beam deflectors, the diffraction efficiency can 

reach above 80% for most angles if the incidence angle ranges from -20 to 20° [Figure S21-

S22]. For the CPEM beam deflector, the diffraction efficiency can maintain >90% when the 

incidence angle is within the whole range of -20° to 20° for both of LCP and RCP 

incidences [Figure S23]. Overall, the HMM beam deflectors show rather robustness to the 

incidence angle, which is largely shifted to 20°. 
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Figure S23. The dependence of the diffraction/conversion efficiencies for the HMM beam 

deflector on the incidence angle with (a) LCP and (b) RCP incidences, respectively. (c) The 

diffraction angles versus the incidence angle for LCP and RCP incidences, respectively. 

 

Note 16: Comparison of the dispersion relations between a traditional plasmonic 

waveguide (array) and an HMM waveguide (array) in the optical spectral domain 
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Figure S24. (a) The air/Ag/air (left panel) and air/HMM/air (right panel) waveguides. (b) The 

dispersion curves calculated for the two cases with the equal waveguide width of W =300 nm. 

Ag and SiO2 ( d
n =1.45) are taken as the metal and dielectric layer with 

m
t  =50 nm, 

d
t  =50 nm, 

and their dielectric constants are from the experimental data [A5]. (c) The electric field 

distributions of 
x

E  of the surface bounded modes at 1550 nm for the two waveguides. (d) The 

air/Ag/air (left panel) and air/HMM/air (right panel) waveguide array. (e) The dispersion 

curves calculated for the two waveguide arrays with the equal period of P=500 nm, while the 

other geometrical parameters are the same as those used in (b). (f) The electric field 

distributions of 
x

E  of the surface bounded modes at 1550 nm for the two waveguide arrays. 

 

By scaling down the metal-dielectric multi-layers, the operating frequencies of the SSP 

mode with the HMM waveguide can be scaled from microwave to THz, to infrared, or even to 

visible domain. We show in Figure S24a-c that, the dispersion curve of the surface bound 

waves with the HMM waveguide has strong resemblance with a traditional metal stripe 

waveguide (air-metal-air). For simplicity, we only show the symmetric surface bounded 

waves, while high-order waveguide modes are not mentioned here. It is interesting to find that 

the dispersion curve for the surface bounded EM waves with the HMM waveguide deviates 

more from the light line, compared to that with air-metal-air waveguide of the same width. 

More interestingly, the asymptote of the dispersion curve with the HMM waveguide is mainly 

controlled by the geometry defining the multi-layers, while that for the case of air-metal-air 

waveguide is mainly determined by the metal material used. When the HMM waveguides are 

arranged in an array [Figure S24d-f], the coupling of the surface bounded waves between the 

adjacent HMM waveguides will significantly pull the dispersion curve further away from the 
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light line, showing the robust and flexible capability of tuning the phase delay of the 

transmitted EM waves. 

Note 17: Design of the polarization-independent beam deflector at 1550 nm 

Our polarization-independent wave shaping device can be generalized to high frequency 

region. Here we have designed beam deflectors and focusing lenses at the near-infrared 

frequency by using the SHMM waveguide array. By carefully selecting the sub-unit period of 

500 nm, the transmission intensity and the phase shift at λ=1550 nm versus the SHMM 

waveguide width can be calculated [Figure S25]. The phase distributions cover 0-2π range 

with the SHMM height of 800 nm (~0.52λ).  
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Figure S25. The dependence of the transmission intensity (a) and phase shift (b) on the width 

of SHMM waveguid, W, with the sub-unit period of 500 nm, when the working wavelength is 

at 1550 nm. The HMM is comprised of 8 pair of Ag/SiO2 layers with 
m

t  =50, and 
d

t  =50 nm. 

The SHMM waveguide array sits on SiO2 substrate. 

 

We have designed a polarization-independent beam deflector with the lattice constant, Lx, 

of 3000 nm. When the SHMM waveguides are arranged in an array, the modal characteristics 

of each waveguide may be varied due to the change of the dielectric environment, which thus 

enables a slightly different efficiency for x- and y-polarized incidences. To make the designed 

beam deflector work without polarization dependence, we have optimized the widths along x- 

and y-directions. The optimized widths of the sub-units in each super-cell for the beam 

deflectors are shown in Table S1. The simulation results demonstrate that the SHMM 

waveguide array based on the optimized widths enables the beam deflecting with good 

polarization independence. The diffraction (conversion) efficiencies reach as high as 93% 
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(73%), and 92% (71%) for x- and y-polarized incidences, respectively [Figure S26b,d]. The 

conversion efficiencies here are much higher than those in the microwave regime, thanks to 

the lower reflection at the HMM-air interface in the infrared frequency region. 

Width 

1 2 3 4 5 6 

Wx(nm) 0 221 275 305 324 350 

Wy(nm) 0 221 275 305 324 335 

Table S1. The distributions of width within a super-cell for the designed polarization-

independent beam deflector. The number of the sub-units used in a super-cell is 6.  
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Figure S26. The simulated electric field distributions in x-z plane for x- (a), and y-polarized 

(c) incidences at 1550 nm. The simulated far-field intensity with and without the SHMM 

waveguides for x- (b), and y-polarized (d) incidences at 1550 nm. The distributions of the 

width of each sub-unit in a super-cell are shown in Table S1. All the other geometrical 

parameters are the same as those in Figure S25.  

Note 18: Design of the polarization-independent focusing lens at 1550 nm 

By further arranging the SHMM waveguide arrays to enable the phase distributions to abide by a 

hyperboloidal profile, a focusing lens can be designed at 1550 nm [Figure S27]. Here, the focal length 

for the focusing lens is fixed at 10 μm with the working wavelength of 1550 nm. With NA of 0.71, the 

field intensity enhancement in the focal plane can reach 9.6 and 15.7 for x-, and y-polarized incidences, 

respectively, and the evaluated FWHM of the focusing spots are about 0.72λ, and 0.59λ for x-, and y-

polarized incidences, respectively, being highly diffraction-limited see Figure S27b,d. 

No. 
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Figure S27. The simulated electric field intensity in x-z plane for x- (a), and y-polarized (c) incidences, 

respectively, with the working wavelength of 1550 nm. (b, d) The simulated normalized electric field 

intensity profile along the white dashed line in (a), and (c), respectively. The focusing length is set to 

be 10 μm with NA of 0.71. All the other geometrical parameters are the same as those in Figure S25. 

 

Note 19: Design of the CP deflector at 1550 nm 
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Figure S28. The simulated electric field distribution for RCP [(a) Ex-component, and (b) Ey-

component], and LCP [(d) Ex-component, and (e) Ey-component] incidences at 1550 nm. The 

simulated far-field electric field intensity profile with and without the RHMM waveguides for 

RCP (c), and LCP (f) incidences at 1550 nm. The HMM is comprised of 8 pair of Ag/SiO2 

layers with 
m

t  =50 nm, and 
d

t  =50 nm. The HMM waveguide arrays sit on SiO2 substrate. 

The other geometrical parameters are set to be 
x

P  =
y

P  =500 nm,
x

W =129 nm, and 
y

W =344 nm.  

 

Here, we design a deflector and focusing lens at the near-infrared frequency based on the 

PB phase. The design approach is analogous to that presented in the main text. We first design 

a half-wave plate at 1550 nm to ensure a high polarization conversion efficiency. By 

appropriately choosing the geometrical parameters [see the caption of Figure S28 for the 

detailed parameters], the simulated transmission amplitude for x-, and y-polarized incidences 
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are | |
x

t  =0.99, | |
y

t  =0.82, respectively, and the phase difference between the x-, and y-

polarized incidences is 1.04π. The simulation results conducted by FDTD further reveal that 

the designed RHMM waveguide with successive rotation angle of π/9 enables the beam 

deflection, both for the RCP, and LCP incidences. The near-field distributions from Figure 

S28a,b,d,e indicate an apparent light deflection. The diffraction efficiency and conversion 

efficiency of light deflection at 1550 nm are 95.1%, and 77.9% both for the RCP, and LCP 

incidences [Figure S28c,f].  

Note 20: Design of the CP focusing lens at 1550 nm 

By further arranging the RHMM waveguide arrays to enable the phase distributions to follow a 

hyperboloidal profile described by Equation 5 in the main text, a planar focusing lens working for the 

CP light waves can be designed at 1550 nm. The focusing lens presents the dual-functionality that 

depends on the CP states of incident light. Light with RCP incidence is focused into a diffraction-

limited spot with FWHM of 0.62λ and field intensity enhancement 15-fold larger than the incident 

light [NA=0.71, Figure S29a, c]. The actual focusing length of 9.1 μm is shorter than the designed one 

of 10 μm, due to the finite-size effect. By contrast, light with the LCP incidence undergoes a 

divergence in the output space [Figure S29b]. 
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Figure S29. (a) The simulated electric field intensity in x-z plane for RCP (a), and LCP (b) 

incidences, respectively, with the working wavelength of 1550 nm. (c) The simulated 

normalized electric field intensity profile along the white dashed line in (a). The focusing 

length is set to be 10μm with NA of 0.71. All the other geometrical parameters are the same 

as those in Figure S28.  
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Note 21: Fabrication method of the HMM metasurface at short wavelengths 

Substrate
Substrate

SubstrateSubstrate

Deposition

FIB

 
 Figure S30. The schematic of the fabricating process of the HMM metasurface. 

 

As shown in Figure S30, two steps should be taken to prepare the HMM metasurface at short 

wavelengths. First, sequential deposition of SiO2/Ag multi-layer on a glass substrate can be 

realized by using sputtering technique or electron beam evaporation technique. A focused-

ion-beam milling is then followed to form the HMM waveguide array. This experimental 

fabrication process has been extensively used for fabricating the HMM structures [A6-A10].  

Note 22: Fabrication tolerance of the HMM waveguide array in the infrared region. 
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Figure S31. The diffraction efficiency (a, b) and conversion efficiency (c, d) versus the 

thickness error, dt, for x- (a, c) and y- (b, d) polarized incidences. The hollow circles are the 

simulated results, while the black solid lines represent the average values of the simulated 

results. 
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Note 23: Design of the polarization-independent beam deflector with tapered SHMM 

waveguide at 1550 nm 

Here, we consider to build a beam deflector by using the tapered SHMM waveguide array 

with the slant angle α of of 5° [Figure S32 (a)]. As shown in Figure S32 and Figure S25 in 

Note 17, the phase and intensity transmission properties of tapered SHMM waveguides with a 

slant angle of 5° [Figure S32] are somewhat different from the one with zero slant angle 

[Figure S25]. We can see that the phase coverage of full 2π range can still be obtained when 

the width of the HMM waveguide, w, ranges from 0 to 320 nm, but the intensity tranmission 

is relatively smaller. 
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Figure 32. (a) Schematic of a unit cell of SHMM waveguide unit with an oblique side wall. 

The transmission phase (b) and intensity transmission (c) versus, w, for x- and y- polarized 

incidences. 

 

Width 
1 2 3 4 5 6 

w(nm) 0 189 242 269 287 306 

Table S2. The distributions of width within a super-cell for the designed polarization-

independent beam deflector. The number of the sub-units used in a super-cell is 6. 

 

Further, when the tapered SHMM waveguides are arranged in an array as the widths of 

the sub-units within a super-cell for the beam deflectors are shown in Table S2. The 

simulation results demonstrate that the tapered SHMM waveguide array enables the beam 

deflecting with good polarization independence. The diffraction (conversion) efficiencies can 

keep as high as 93% (60%), and 96% (57%) for x- and y-polarized incidences, respectively 

[Figure S33]. The diffraction/conversion efficiencies are slightly smaller than those with 

vertical side walls. 

No. 
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Figure S33. The simulated electric field distributions in x-z plane for x- (a), and y-polarized 

(c) incidences by using the tapered SHMM waveguide array with the slant angle α of 5° at 

1550 nm. The simulated far-field intensity with and without the tapered SHMM waveguides 

for x- (b), and y-polarized (d) incidences. The distributions of the width of each sub-unit 

within a super-cell are shown in Table S2. All the other geometrical parameters are the same 

as those in Figure S25 in Note 17.  
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