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Based on the Padé approximation and multistep method, we propose an implicit high-order unconditionally
stable complex envelope algorithm to solve the time-dependent Maxwell’s equations. Unconditional numeri-
cal stability can be achieved simultaneously with a high-order accuracy in time. As we adopt the complex
envelope Maxwell’s equations, numerical dispersion and dissipation are very small even at comparatively
large time steps. To verify the capability of our algorithm, we compare the results of the proposed method
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with the exact solutions. © 2008 Optical Society of America
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The well-known class of algorithms to solve time-
dependent Maxwell’s equations (TDMEs) is based on
the finite-difference time-domain (FDTD) method
proposed by Yee [1]. The FDTD method is a simple,
robust, and powerful technique to simulate transient
electromagnetic (EM) phenomena [2]. However, since
the FDTD method is an explicit time-stepping tech-
nique, its time step is limited by the Courant—
Friedrichs—Lewy (CFL) stability condition [2]. As a
result, the FDTD may require a large number of it-
erations in time, especially when fine geometries are
involved. To remove the CFL stability condition, sev-
eral time-domain techniques have been developed.
Kole et al. and De Raedt et al. [3—-5] presented a fam-
ily of unconditionally stable algorithms that solve the
TDME through the application of orthogonal trans-
formations. Although this method can produce a
high-order approximation, the time-evolution opera-
tor is not always an orthogonal transformation.
Moreover, this method needs to solve many exponen-
tial matrices to obtain a high-order approximation.

In this Letter, we propose an implicit high-order
unconditionally stable complex envelope algorithm to
solve the TDME based on the Padé approximation
and multistep method. Unconditional numerical sta-
bility can be achieved simultaneously with a high-
order accuracy in time. As we adopt the complex en-
velope Maxwell’s equations, numerical dispersion
and dissipation are very small even at large time
steps. Thus, the upper bound of the time step is im-
plied only by the required numerical accuracy. Mean-
while, we compared the results of our algorithm with
exact solutions, which agree well with each other.

Maxwell’s curl equations for the envelopes of the
EM fields E and H in linear, isotropic, lossless, and
nondispersive media are given in the differential
form by
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where € and u are the permittivity and permeability
and o denotes the carrier frequency. The complex en-
velope TDME can be rewritten as
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and using V(t)=[H(¢),E(#)]7, Eq. (3) becomes
d
E\P(t) =MY(t). (4)
The formal solution of Eq. (4) is given by
V(t+7)=exp(TM)V(¢). (5)

In a numerical procedure, the time-evolution op-
erator exp(7M) can be solved by Padé approximation
[6]
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where I denotes the unit matrix. If we execute Eq. (6)
as an approximation, the implicit scheme of Eq. (5)
can be reduced to the Crank—Nicolson method [2],
which is unconditionally stable and second order in
time. Equation (8) has the 2nth-order accuracy in
time, and the coefficients a,, are the reciprocal of the
factor decomposition coefficients for the numerator of
the Padé operator.

Thus, the unknown field W (¢+7) is related to the
known field W(¢) as follows:
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The 2nth-order Padé propagator may be decomposed
into an n-step algorithm by the multistep method for
which the ith partial step takes the form [7]
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Each such partial step is unitary and tridiagonal.
These two important properties imply that the re-
sulting algorithm is unconditionally stable and Eq.
(10) can be solved efficiently by the Thomas algo-
rithm [8].

In this section, we present the details of the imple-
mentation of our algorithm. To demonstrate the basic
idea of our algorithm, we consider a one-dimensional
(1D) system along the x direction. In this case, the
complex envelope TDME for TM mode are reduced to
two independent sets of first-order differential equa-
tions. Using the second-order central-difference ap-
proximation to the first derivative with respect to x,
we obtain
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where the integers i and j label the grid points and
Ax denotes the distance between two next-nearest
neighbor lattice points. The electric field vanishes at
the boundaries, which is required by the boundary
conditions. Equations (11) and (12) can be combined
into one equation in the form of Eq. (5) by introduc-
ing the n-dimensional vector

{Hy(i,t) i odd
V(i) = (13)

E.(i,t) ieven

The ith element of W (i,t) is given by the inner prod-
uct V(i ,¢) =eiT- (t), where e; denotes the ith unit vector
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in the n-dimensional vector space. Using this nota-
tion, the matrix M is given by

n-1

M= [aeel - aj,eie! + Beel ], (14)
-1
where
(1/Ax)(1/7;) ; d # b odd
o= x n;), B=-jo, and ;= .
’ ' " | ieven

In a two-dimensional (2D) TDME, the matrix of M
is divided into two matrices M, and M,. Therefore,
Eq. (5) reads

W(t + 1) = exp(7M, + TM,) ¥ (2). (15)
With an application of the locally one-dimensional
scheme (LOD), Eq. (15) can be solved in two steps. In
each half step of the LOD, we move forward only in
the x or y direction. Therefore, we can repeat the 1D
scheme to update the time step.

In the following, we present several simulated re-
sults to test our algorithm. As the TDME are scale in-
variant, the length and the velocity of light in
vacuum are in units of A and c, respectively. Time is
given in units of £o=\/c. To examine the stability and
the numerical error of our scheme, we let an incident
Gaussian pulse propagate in vacuum. Figure 1 shows
the exact and the numerical solutions of electric am-
plitude when the wave propagates 200 time units.
The results demonstrate that our scheme will remain
stable for long time propagation even at large
time steps. Table 1 gives the error L,
=J(1/N)=N (ESat_E™™)2 for four different time
steps, where E¥** and EM™™ are the exact and the
numerical solutions. The mesh grid is chosen very
small so that the error from spatial integration can
be neglected. In all three cases a fourth-order in the
time convergence rate of the proposed algorithm is
observed as demonstrated by the data in the third
column of Table 1.

Figure 2 shows the numerical dispersion and dissi-
pation errors in different orders of time. We compare
results using Kole et al.’s method [3] with results ob-
tained by our algorithm. Although the time step of
Kole et al.’s method is far smaller than that of our al-
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Fig. 1. (Color online) Exact and numerical solutions of
electric amplitude when the wave propagates 200 time
units in vacuum, where the mesh size and time step are
Ax=0.0025 and At=8, respectively.
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Table 1. Time Step Refinement Analysis for a 1D

System
Time Step (At) Ly Error Order
8 6.4645E -7 —
4 4.2725E-8 3.9194
2 2.9087E-9 3.8766
1 1.9863E-10 3.8722

gorithm, the dispersion and dissipation errors are
much larger than those of our algorithm. The real
time steps in second-order accuracy for both Kole
et al.’s method and our scheme are one quarter of the
time steps in Fig. 2. That is the reason why the
second-order dissipation curve appears to be lower
than the fourth-order dissipation curve in Fig. 2(a).
For the fourth-order in time scheme, both disper-
sion and dissipation errors are very small at com-
paratively large time steps. If we increase the spatial
resolution, which is demanded in problems with de-
tailed geometries, the numerical dispersion error can
decrease further. Standard FDTD methods have no
dissipation because it applies Yee leapfrog time step-
ping [2], but the time step is limited by the CFL sta-
bility condition. In contrast, dissipation occurs in our
scheme because of the Padé approximation, but it re-
mains very small even for large time steps.
Scattering and/or transmission of EM fields in the
presence of an object are one of the main applications
of the FDTD method [2]. The inset of Fig. 3 shows a
quarter-wave reflector that consists of alternating

layers of two materials with refractive indices of \E
and 1.0. Figure 3 compares the transmission of the
quarter-wave reflector calculated by the transfer-
matrix method (TMM) and by our scheme. The time
step and mesh size for our scheme are 8 and 0.01, re-
spectively. Clearly, the result of our scheme is consis-
tent with that of the TMM calculations.
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Fig. 2. (Color online) Numerical dispersion and dissipa-
tion error in different orders in time, where mesh size and
pulse width are Ax=0.0025 and t,=25, respectively. (a)
Kole et al.’s method [3], (b) our scheme.
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(Color online) Transmission curves of the quarter-
wave reflector obtained by TMM and our scheme, where
the mesh size and time step for our scheme are Ax=0.01
and At¢=8, respectively. Inset, quarter-wave reflector.

Fig. 3.

In conclusion, we presented a novel algorithm to
solve the TDME based on the Padé approximation
and multistep method. Unconditional numerical sta-
bility can be achieved simultaneously with high-
order accuracy in time. As we adopt the complex en-
velope Maxwell’s equations, the mesh size can be
chosen very small to account for detailed geometries
in the actual numerical computation. Most impor-
tantly, in contrast to many conventional methods, the
time step can be set very large to improve the com-
putational efficiency. Even for large time steps the
numerical dispersion and dissipation remain very
small. Using higher-order schemes, the time step
could be increased even further.
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