headerphoto


   人工微结构是一种人工设计的微纳材料,其结构尺寸小于或等于入射波场(如电磁波、声波等)的波长,通常被学术界称为超材料(对于平面型超材料又称为超表面)。与传统体材料不同,人工微结构材料的物理性质并不取决于其组成分子或者原子,而是决定于所设计的“人造原子”,通过任意设计“人造原子”的单元以及排列方式,可以在不违背基本的物理学规律的前提下,获得与自然界中的物质具有迥然不同的超常物理性质的新物质,进而发展自然材料难以实现的新奇物理效应——如负折射、光学隐身、异常折射、光子霍尔效应等。迄今发展出的人工微纳结构材料多与光、声、电、磁、热等性质相联系,为人类新材料、新技术的突破提供了一个新契机。同时,人工微纳结构材料也在军事领域具有非常广阔的应用领域,它已被评为美国国防部2013-2017年科技发展五年计划中重点关注的六大颠覆性基础研究领域之一,美国国防部先进研究项目局(DARPA)把人工微结构定义为“强力推进增长领域”,美国空军科学研究办公室(AFOSR)将其列入“十大关键领域”;Science杂志也分别在2003年和2006年评选此人工微纳材料为十大科学进展

   人工微结构波场调控是指利用人工微纳结构在亚波长尺度对波场的偏振、振幅、相位、频率等性质进行高度定制化的调控,为发现新效应和新现象、开发新器件和开拓新应用提供了重要途径。开展人工微纳结构波场调控研究,不仅有助于深刻理解波场与物质相互作用,而且对其它学科或领域的发展具有重要的推动作用。我们课题组主要针对人工微纳结构材料在光场、声场等波场调控领域的新物理效应、新技术应用进行系统性研究。

 

图1 利用亚波长乃至深亚波长尺度的人工微结构与波场发生明显的相互作用,

进而调控波场各维度。



1. 人工微结构光场调控

   实现对光场频率、振幅、相位和偏振态等多个维度的自由操控,进而获得小型化、轻质化和集成化的光学器件是目前国际上微纳光学和信息光学领域的重要研究内容。超表面作为一种人造光学原子,为实现对光与物质相互作用的增强和操控提供了一种有效手段,为在微区实现对光场的高效调控提供了一种全新的方式,是新世纪以来微纳光学研究领域中备受关注的前沿方向。利用超表面不仅能够实现对光波频率、振幅和偏振态的灵活操控,同时还能够在亚波长尺度下实现对光场相位的有效控制,因此超表面在光场操控方面具有广泛的应用前景和应用价值,相关研究为微纳光学领域光学器件未来的研究、设计和发展提供了无限的可能性。实现对光场在不同维度下的灵活控制是目前超表面研究领域的热门方向,由此产生的新的光学现象和性能优异的光学器件开始受到人们越来越多的关注。近年来,我们在超表面光场偏振态、相位、振幅和多维度联合调控方面取得了一系列研究进展,揭示了超表面在光场调控研究领域巨大的研究潜力和广阔的应用前景 [Adv. Mater. 31, 1802458 (2019)Adv. Mater. 31, 1805912 (2019)]。例如我们利用人工微结构在亚波长尺度下直接操控光场相位的方式,在非手性微结构中实现了可控旋光,相比于传统的旋光方式,这种非手性微结构可以通过对微结构单元结构参数的有序设计,实现对旋光度大小更加直接、灵活的控制 [Light: Sci. & Appl. 5, e16096 (2016)]我们基于单层交错纳米天线人工微结构阵列,提出了一种具有广泛适用性的超表面二分之一波片设计方法,实现了偏振转换角与波长无关的宽带二分之一波片 [ACS Photonics 4, 2061 (2017)];我们在提出多棒能级杂化及镜像理论的基础上,通过增加微结构单元中金属棒的数量将几何相位的调控效率提高至理论极限,同时有效地扩宽了微结构的响应带宽 [Adv. Funct. Mater. 25, 5428 (2015)]我们提出了一种全新的金属棒微结构设计,通过增加金属棒的厚度产生了新的共振模式,进而在1067 nm波长下实现了对入射光场在金属棒长轴方向上p的相位延迟,并实现了效率高于70%的光子自旋霍尔效应 [Adv. Opt. Mater. 5, 1700413 (2017)];我们通过对亚波长金属天线微结构的结构参数和旋转角度的合理设计,实现了对出射光场相位和振幅的联合调控,进而实现了高质量艾里光束的生成 [Adv. Opt. Mater. 4, 1230 (2016)]

图2. (a)人工微结构的形状可以任意裁剪,不同的微结构形状与光场相互作用时具有不同的本征模式;(b)利用人工微结构实现光场单维度与多维度联合调控;(c) 基于人工微结构可以实现不同的多功能超表面技术。


2. 少层微结构光场调控

   光学人工微结构的提出掀起了光学领域的一场革命,大大拓展了人类操纵光场的手段与能力。其中,三维的体超材料可以实现传统自然材料难以实现的功能,比如负折射等,但这类超材料通常损耗较大且难以制造。作为体超材料的一种延伸与革新,二维超表面一经提出便引起了研究者们的广泛关注。它易于制造,并且可以在亚波长尺度对光场的偏振、振幅、相位、频率等性质进行调控。但单层的超表面可调控的自由度相对较少,渐渐难以满足人们对更多功能和更新颖功能的设计需求。近年来,少层超表面逐渐兴起。相对于体超材料,它不仅保持了单层超表面易于制造且损耗较小的优点,而且大大增加了可调控的自由度。更重要的是,少层超表面有着丰富的层间效应,比如近场耦合效应、波导效应、多波干涉效应等,这使得少层超表面能够超越单层超表面,实现很多新颖的功能 [Adv. Mater. 27, 5410 (2015)Adv. Opt. Mater. 7, 1801477 (2019)]。我们基于少层超表面的近场波导效应提出了一种新型的双层矩形纳米孔结构,透射光的相位可以通过改变纳米孔的长度与横向偏移来调控,透射光的偏振垂直于纳米孔的长轴,因此可以通过旋转纳米孔来调控透射光的局域偏振态 [Adv. Funct. Mater. 25, 704 (2015)], 同时基于类似的矩形纳米孔结构,实现了近红外波段的双向近完美吸收 [Adv. Opt. Mater. 5, 1700152 (2017)];我们基于具有各向异性光学响应的少层超表面结构,利用基于层间旋转型微结构与几何相位原理的梯度渐变设计,在近红外波段实现了对反射和折射光场波前和能量的同时控制,还利用类似的设计在近红外波段实现了高效率的互易双带圆偏振光场非对称透过 [Sci. Rep. 6, 35485 (2016)Adv. Opt. Mater. 4, 2028 (2016)]; 我们提出了一种双层超表面结构,利用光波在层间的多波干涉效应,有效地增强了光场与微结构的相互作用强度,进而在近红外宽波段范围内实现了高消光比的偏振消光效应,并利用所提出的三种双层人工微结构基本单元实现偏振依赖单通道和双通道成像的设计原理和实验测试结果 [Adv. Opt. Mater. 7, 1900260 (2019)]

图3. 少层人工微结构光场调控具有丰富物理效应、高调控自由度、

新功能集成、低损耗等优势。


3. 电介质微结构光场调控

   超材料自诞生之际,其低下的效率与高的热损耗一直被人所诟病,成为限制超材料及超表面发展的一大阻碍。近年来,人们发现在设计中可以选择极低损耗的高折射率电介质作为微结构的设计媒介,从而可以避免金属微结构固有的热损耗;其次,电介质微结构在同一结构中同时支持电谐振与磁谐振以及相应的多极谐振,这是电介质微结构相比于金属微结构的又一重要优势;另一方面,电介质微结构中的典型代表——硅材料,可以与成熟的半导体集成工艺相兼容,制备成本很低。以上这些优点使电介质人工微结构在近年来获得了学术界与商业界的大量关注。我们利用非晶硅的高折射率特性设计了硅波导结构,当入射电磁波耦合到高度约为一个波长的微结构中会激发出波导模式,通过波导的宽度参数的改变可以实现出射电磁波相位的调控,利用这种非晶硅波导在1100-1700 nm的入射波长以及0-60度入射角度具有显著的模式保护特性,实现了突破傍轴条件的宽带微结构傅里叶透镜,聚焦效率接近50% [Adv. Mater. 30, 1706368 (2018)]; 我们还借助于电介质微结构的偏振、相位同时调控的优势,同时实现了矢量光束生成与聚焦,并在此基础上实现了突破衍射极限的超分辨聚焦, 焦斑显著小于瑞利衍射极限,与经过荧光标记的超分辨实现方案不同,这种超分辨技术不依赖于被观测物,同时可以实时高速成像,在高分辨率成像、生物检测、有机分析等领域具有广阔的应用前景 [Adv. Opt. Mater. 6, 1800795 (2018)];我们提出了一种少层电介质层堆垛的多电介质超表面结构。由于TiO2层与SiO2Si3N4层之间的折射率满足防反射层的指数匹配方程,多电介质纳米结构中的多级谐振模式在非谐振波段的作用可以被极大的抑制,从而有效地抑制非设计波段的反射效率,显著地提高反射光谱的单色性,生成的结构色成功地覆盖了171%sRGB空间、127%Adobe RGB空间和57%CIE色品图空间,是目前已经报道的结构色中饱和度最高的结果 [Nano Lett. 19, 4221 (2019)Adv. Opt. Mater. 6, 1701009 (2018)];我们利用各向异性电介质微结构的设计,结合微结构的波导模式与几何相位,实现了高效率左旋异常光的能量分配式多功能超表面。其功能性不局限于多路涡旋光同时生成,还包括超表面透镜、异常折射等功能的集成设计,不同功能的能量比可以在一个较大的设计范围内任意调节(2-4‑24[Adv. Mater. 31, 1901729 (2019)Phys. Rev. Appl. 8, 014012 (2017)]我们将人工微纳结构与纳米光子学波导相结合,利用波导中的自旋-动量锁定效应,实现了自由空间光的自旋选择定向耦合与自旋选择波长解多路复用,激发的波导模式的传播方向可以通过光的自旋态与波长灵活调控,并且共振峰的峰宽、激发的模式类型、耦合效率、工作波长等性质都可通过改变波导或纳米天线结构的几何参数来调节 [Adv. Opt. Mater. 7, 1801273 (2019)]

图4. 电介质微结构具有高效率、多极电磁谐振同时调控的优势,

可以用来实现高品质结构色、超分辨聚焦、超表面多路传输等。


4. 微结构非线性光场调控

    非线性光学自激光器诞生以来得到了快速发展并逐渐成为了光学领域的一门重要分支。传统光学晶体由于非线性材料本征极化率低的特点,需要很长的光与晶体相互作用距离,即便引入相位匹配,对作用距离的需求依然无法避免。这一特点严重阻碍了非线性光学在微纳领域的应用及集成。利用超表面优良的局域场增强能力可以在纳米尺寸激发出非线性光学信号,此外,由于尺寸超薄,不需要考虑相位匹配问题,大大提高了超表面的设计灵活性。更为重要的是,超表面能够完全控制产生的非线性光学信号,包括振幅、偏振、相位,甚至还可以做联合调控,这是传统晶体无法实现的。我们利用非线性超表面引入频率维度,可以有效的提高信道数量,通过检偏不同频率及自旋态的组合,可以得到不同拓扑荷数的涡旋光聚焦在不同的焦平面上,同时提出了一种简化的干涉方法,利用±1阶相位掩模板,光的能量主要集中在±1阶衍射级上并能够实现自干涉,由此方便地得到了非线性光的拓扑荷数 [Laser Photonics Rev.12, 1800164 (2018)]; 我们首次将编码超表面的概念拓展到非线性光学领域,同时实现了基频、二倍频和三倍频不同比特数的编码,并实现了基于不同编码非线性光的全息图生成 [Laser Photonics Rev. 13, 1900045 (2019)];我们提出了一种结合了法诺共振与模式匹配的杂化超表面来提高二次谐波的转化效率,一方面,二次谐波受益于微结构在基频与二倍频均有谐振响应;另一方面,通过调节法诺共振在二倍频波长处,等离激元结构既可以在该波长处提供局域场增强又可以提供高散射能力以适配产生的二次谐波的辐射 [Opt. Lett. 42, 3117 (2017)]

图5. 人工微结构与光场相互作用可以激发非线性效应,非线性波前调控与结构的

对称性、非线性光的偏振性、非线性光的阶数有关系,在提高非线性光信息传输

的阶数与通道数方面有明显优势。


5. 人工微结构声场调控

    近年来,声子晶体和声学超材料得到了飞速的发展。与光子晶体和电磁超材料类似,声子晶体和声学超材料可以极大地拓展人们对声波的调控手段。传统的超材料在实际应用中存在体积较大,制备过程复杂等问题。为了克服这些问题,研究人员设计了一种平面型声学超材料,即声学超表面,其声学性质取决于其结构参数,通过对结构参数的任意设置,可以实现对声波的任意操控,同时其亚波长的厚度和灵活的声波操控能力使它在集成声学器件领域具有巨大的应用潜力。通过对声结构的排布设计尤其是超表面的设计,可以实现声波前的控制,其中包括异常反射和透射现象、聚焦与成像、特殊声束产生等,在声源设计、超声探测和声镊操纵等领域有重大的应用价值。外尔点是拓扑半金属能带的基本结构,即三维动量空间携带量子化拓扑荷的能带双重简并点。第二类外尔点是一种特殊的外尔点,其能带色散沿一个方向强烈倾斜,并在能带连接处具有锥型的费米面。我们通过设计制造堆叠手性声子晶体,首次完成了第二类外尔声子晶体实验工作,观测到了外尔频率上的拓扑转变和外尔频率间的费米孤。外尔声子晶体有望应用在降低界面和尖锐拐角的反射,而第二类外尔声子晶体由于同时具有表面模式和体模式,有望进一步拓宽外尔声子晶体在非对称波导和低反射异常折射中的应用 [Phys. Rev. Lett. 122, 104302 (2019)];我们还利用基于凯库勒晶格的声子晶体构建了声学拓扑绝缘体,该声子晶体内部的声子具有非平庸的拓扑效应,这类拓扑效应受晶格对称保护而无需破坏时间反演对称。我们利用该声子晶体的拓扑折射特性,得到了单束、对称和反对称双束及多束辐射的声天线模式。相较于用超表面或超材料的方式,该拓扑系统具有不依赖波源、能量损耗小、稳定性高的特点,未来有可能用于水下通信、超声探测等领域 [Phys. Rev. Appl. 11, 044086 (2019)]。我们首次实现了针对单声波频率具有稳定相位延迟分别为 0 π的两种结构单元,并将这两种结构单元分别与二进制编码的“0”和“1”相对应,通过控制“0”和“1”的排布,实现了透射波远场分布控制、声波聚焦和非对称传播等功能。该设计具有非常高灵活性和自由度,为声学天线、隐身材料、透镜、声波调制器和声二极管等器件的研发集成提供了新的前进方向 [Adv. Mater. 29, 1603507 (2017)Phys. Rev. Appl. 7, 024010 (2017)]。我们进一步提出了反射式的多比特声学编码人工结构,通过利用声学编码超表面对声波调控的叠加原理,实现了对反射声波远场形状操控,声波异常反射,并且生成了方向可控的涡旋声波,这种声学编码人工结构在室内降噪、声场调控以及粒子捕获等领域都有广阔的应用前景 [Appl. Phys. Lett. 114, 091905 (2019)]

图6. 人工微结构与声场作用,可以用来调控拓扑声子结构的能带,可以实现声波的

波前调控,在声波精密控制、声子信息应用等方面具有广阔前景。



科研项目


项目类型

项目名称

项目编号

项目经费

执行时间

国家杰出青年科学基金

少层人工微结构光场调控物理

11925403400万2020.01-2024.12

天津市杰出青年基金

基于少层人工微结构的光场调控物理及其应用

18JCJQJC45700100万2018.10-2022.09

国家重点研发计划

新型线性和非线性人工微结构及器件

2016YFA03011021680万2016.06-2021.05

国家重大研究计划

基于人工微结构的手性精准构筑及其应用

9185610175万2019.01-2021.12

国家自然科学基金面上项目

线性和非线性多功能超表面光场调控及应用

1177418669万(直接费用)2018.01-2021.12

天津市自然科学基金青年项目

-

16JCQNJC017006万2016.04-2019.03

国家自然科学基金面上项目

少层超表面高效调控光学特性和新型光场研究

1157416386.4万2016.01-2019.12

南开大学百名青年学科带头人培养计划

等离子激元超表面光学特性调控

--50万2014.12-2018.12

国家自然科学基金面上

梯度渐变超材料光学特性调控及其应用研究

6137800680万2014.01-2017.12

国家自然科学基金青年基金

-

1130416325万2014.01-2016.12

教育部新世纪优秀人才

基于新结构、新机理的超材料光学特性研究

NCET-13-029450万2014.01-2016.12

天津市自然基金

动态调控表面等离子激元诱导透明杂化超材料及其应用

13JCQNJC019006万2013.04-2016.03

教育部博士点新教师基金

-

201200311200324万2013.01-2015.12

973课题南开部分

空间结构光场与微结构的线性和非线性耦合效应

2012CB921902119万2012.01-2016.12

中央高校基本科研业务费

-

6501235115万2011.09-2013.09

国家自然科学基金青年基金

微结构光纤表面等离子体谐振和局域场增强及其应用研究

6100800221万2011.01-2013.12

高校博士点新教师基金

基于微结构光纤的表面等离子体谐振及其应用研究

2010003011200053.6万2011.01-2013.12

中央高校基本科研业务费

-

6501080115万2010.06-2012.05